Remote sensing of cloud sides of deep convection: towards a three-dimensional retrieval of cloud particle size profiles

The cloud scanner sensor is a central part of a recently proposed satellite remote sensing concept – the three-dimensional (3-D) cloud and aerosol interaction mission (CLAIM-3D) combining measurements of aerosol characteristics in the vicinity of clouds and profiles of cloud microphysical characteri...

Full description

Bibliographic Details
Main Authors: T. Zinner, A. Marshak, S. Lang, J. V. Martins, B. Mayer
Format: Article
Language:English
Published: Copernicus Publications 2008-08-01
Series:Atmospheric Chemistry and Physics
Online Access:http://www.atmos-chem-phys.net/8/4741/2008/acp-8-4741-2008.pdf
Description
Summary:The cloud scanner sensor is a central part of a recently proposed satellite remote sensing concept – the three-dimensional (3-D) cloud and aerosol interaction mission (CLAIM-3D) combining measurements of aerosol characteristics in the vicinity of clouds and profiles of cloud microphysical characteristics. Such a set of collocated measurements will allow new insights in the complex field of cloud-aerosol interactions affecting directly the development of clouds and precipitation, especially in convection. The cloud scanner measures radiance reflected or emitted by cloud sides at several wavelengths to derive a profile of cloud particle size and thermodynamic phase. For the retrieval of effective size a Bayesian approach was adopted and introduced in a preceding paper. <br><br> In this paper the potential of the approach, which has to account for the complex three-dimensional nature of cloud geometry and radiative transfer, is tested in realistic cloud observing situations. In a fully simulated environment realistic cloud resolving modelling provides complex 3-D structures of ice, water, and mixed phase clouds, from the early stage of convective development to mature deep convection. A three-dimensional Monte Carlo radiative transfer is used to realistically simulate the aspired observations. <br><br> A large number of cloud data sets and related simulated observations provide the database for an experimental Bayesian retrieval. An independent simulation of an additional cloud field serves as a synthetic test bed for the demonstration of the capabilities of the developed retrieval techniques. For this test case only a minimal overall bias in the order of 1% as well as pixel-based uncertainties in the order of 1 μm for droplets and 8 μm for ice particles were found for measurements at a high spatial resolution of 250 m.
ISSN:1680-7316
1680-7324