Electromigrated electrical optical antennas for transducing electrons and photons at the nanoscale

Background: Electrically controlled optical metal antennas are an emerging class of nanodevices enabling a bilateral transduction between electrons and photons. At the heart of the device is a tunnel junction that may either emit light upon injection of electrons or generate an electrical current wh...

Full description

Bibliographic Details
Main Authors: Arindam Dasgupta, Mickaël Buret, Nicolas Cazier, Marie-Maxime Mennemanteuil, Reinaldo Chacon, Kamal Hammani, Jean-Claude Weeber, Juan Arocas, Laurent Markey, Gérard Colas des Francs, Alexander Uskov, Igor Smetanin, Alexandre Bouhelier
Format: Article
Language:English
Published: Beilstein-Institut 2018-07-01
Series:Beilstein Journal of Nanotechnology
Subjects:
Online Access:https://doi.org/10.3762/bjnano.9.187
id doaj-9a6ca0a32bb04368b63dd6f20efb50ad
record_format Article
spelling doaj-9a6ca0a32bb04368b63dd6f20efb50ad2020-11-25T01:46:54ZengBeilstein-InstitutBeilstein Journal of Nanotechnology2190-42862018-07-01911964197610.3762/bjnano.9.1872190-4286-9-187Electromigrated electrical optical antennas for transducing electrons and photons at the nanoscaleArindam Dasgupta0Mickaël Buret1Nicolas Cazier2Marie-Maxime Mennemanteuil3Reinaldo Chacon4Kamal Hammani5Jean-Claude Weeber6Juan Arocas7Laurent Markey8Gérard Colas des Francs9Alexander Uskov10Igor Smetanin11Alexandre Bouhelier12Laboratoire Interdisciplinaire Carnot de Bourgogne, CNRS-UMR 6303, Université Bourgogne Franche-Comté, 21078 Dijon, FranceLaboratoire Interdisciplinaire Carnot de Bourgogne, CNRS-UMR 6303, Université Bourgogne Franche-Comté, 21078 Dijon, FranceLaboratoire Interdisciplinaire Carnot de Bourgogne, CNRS-UMR 6303, Université Bourgogne Franche-Comté, 21078 Dijon, FranceLaboratoire Interdisciplinaire Carnot de Bourgogne, CNRS-UMR 6303, Université Bourgogne Franche-Comté, 21078 Dijon, FranceLaboratoire Interdisciplinaire Carnot de Bourgogne, CNRS-UMR 6303, Université Bourgogne Franche-Comté, 21078 Dijon, FranceLaboratoire Interdisciplinaire Carnot de Bourgogne, CNRS-UMR 6303, Université Bourgogne Franche-Comté, 21078 Dijon, FranceLaboratoire Interdisciplinaire Carnot de Bourgogne, CNRS-UMR 6303, Université Bourgogne Franche-Comté, 21078 Dijon, FranceLaboratoire Interdisciplinaire Carnot de Bourgogne, CNRS-UMR 6303, Université Bourgogne Franche-Comté, 21078 Dijon, FranceLaboratoire Interdisciplinaire Carnot de Bourgogne, CNRS-UMR 6303, Université Bourgogne Franche-Comté, 21078 Dijon, FranceLaboratoire Interdisciplinaire Carnot de Bourgogne, CNRS-UMR 6303, Université Bourgogne Franche-Comté, 21078 Dijon, FranceP. N. Lebedev Physical Institute, Leninsky pr. 53, 119991 Moscow, RussiaP. N. Lebedev Physical Institute, Leninsky pr. 53, 119991 Moscow, RussiaLaboratoire Interdisciplinaire Carnot de Bourgogne, CNRS-UMR 6303, Université Bourgogne Franche-Comté, 21078 Dijon, FranceBackground: Electrically controlled optical metal antennas are an emerging class of nanodevices enabling a bilateral transduction between electrons and photons. At the heart of the device is a tunnel junction that may either emit light upon injection of electrons or generate an electrical current when excited by a light wave. The current study explores a technological route for producing these functional units based upon the electromigration of metal constrictions.Results: We combine multiple nanofabrication steps to realize in-plane tunneling junctions made of two gold electrodes, separated by a sub-nanometer gap acting as the feedgap of an optical antenna. We electrically characterize the transport properties of the junctions in the light of the Fowler–Nordheim representation and the Simmons model for electron tunneling. We demonstrate light emission from the feedgap upon electron injection and show examples of how this nanoscale light source can be coupled to waveguiding structures.Conclusion: Electromigrated in-plane tunneling optical antennas feature interesting properties with their unique functionality enabling interfacing electrons and photons at the atomic scale and with the same device. This technology may open new routes for device-to-device communication and for interconnecting an electronic control layer to a photonic architecture.https://doi.org/10.3762/bjnano.9.187electromigrationFowler–Nordheimhot-electron emissioninelastic electron tunnelingoptical antennastransition voltagetunnel junction
collection DOAJ
language English
format Article
sources DOAJ
author Arindam Dasgupta
Mickaël Buret
Nicolas Cazier
Marie-Maxime Mennemanteuil
Reinaldo Chacon
Kamal Hammani
Jean-Claude Weeber
Juan Arocas
Laurent Markey
Gérard Colas des Francs
Alexander Uskov
Igor Smetanin
Alexandre Bouhelier
spellingShingle Arindam Dasgupta
Mickaël Buret
Nicolas Cazier
Marie-Maxime Mennemanteuil
Reinaldo Chacon
Kamal Hammani
Jean-Claude Weeber
Juan Arocas
Laurent Markey
Gérard Colas des Francs
Alexander Uskov
Igor Smetanin
Alexandre Bouhelier
Electromigrated electrical optical antennas for transducing electrons and photons at the nanoscale
Beilstein Journal of Nanotechnology
electromigration
Fowler–Nordheim
hot-electron emission
inelastic electron tunneling
optical antennas
transition voltage
tunnel junction
author_facet Arindam Dasgupta
Mickaël Buret
Nicolas Cazier
Marie-Maxime Mennemanteuil
Reinaldo Chacon
Kamal Hammani
Jean-Claude Weeber
Juan Arocas
Laurent Markey
Gérard Colas des Francs
Alexander Uskov
Igor Smetanin
Alexandre Bouhelier
author_sort Arindam Dasgupta
title Electromigrated electrical optical antennas for transducing electrons and photons at the nanoscale
title_short Electromigrated electrical optical antennas for transducing electrons and photons at the nanoscale
title_full Electromigrated electrical optical antennas for transducing electrons and photons at the nanoscale
title_fullStr Electromigrated electrical optical antennas for transducing electrons and photons at the nanoscale
title_full_unstemmed Electromigrated electrical optical antennas for transducing electrons and photons at the nanoscale
title_sort electromigrated electrical optical antennas for transducing electrons and photons at the nanoscale
publisher Beilstein-Institut
series Beilstein Journal of Nanotechnology
issn 2190-4286
publishDate 2018-07-01
description Background: Electrically controlled optical metal antennas are an emerging class of nanodevices enabling a bilateral transduction between electrons and photons. At the heart of the device is a tunnel junction that may either emit light upon injection of electrons or generate an electrical current when excited by a light wave. The current study explores a technological route for producing these functional units based upon the electromigration of metal constrictions.Results: We combine multiple nanofabrication steps to realize in-plane tunneling junctions made of two gold electrodes, separated by a sub-nanometer gap acting as the feedgap of an optical antenna. We electrically characterize the transport properties of the junctions in the light of the Fowler–Nordheim representation and the Simmons model for electron tunneling. We demonstrate light emission from the feedgap upon electron injection and show examples of how this nanoscale light source can be coupled to waveguiding structures.Conclusion: Electromigrated in-plane tunneling optical antennas feature interesting properties with their unique functionality enabling interfacing electrons and photons at the atomic scale and with the same device. This technology may open new routes for device-to-device communication and for interconnecting an electronic control layer to a photonic architecture.
topic electromigration
Fowler–Nordheim
hot-electron emission
inelastic electron tunneling
optical antennas
transition voltage
tunnel junction
url https://doi.org/10.3762/bjnano.9.187
work_keys_str_mv AT arindamdasgupta electromigratedelectricalopticalantennasfortransducingelectronsandphotonsatthenanoscale
AT mickaelburet electromigratedelectricalopticalantennasfortransducingelectronsandphotonsatthenanoscale
AT nicolascazier electromigratedelectricalopticalantennasfortransducingelectronsandphotonsatthenanoscale
AT mariemaximemennemanteuil electromigratedelectricalopticalantennasfortransducingelectronsandphotonsatthenanoscale
AT reinaldochacon electromigratedelectricalopticalantennasfortransducingelectronsandphotonsatthenanoscale
AT kamalhammani electromigratedelectricalopticalantennasfortransducingelectronsandphotonsatthenanoscale
AT jeanclaudeweeber electromigratedelectricalopticalantennasfortransducingelectronsandphotonsatthenanoscale
AT juanarocas electromigratedelectricalopticalantennasfortransducingelectronsandphotonsatthenanoscale
AT laurentmarkey electromigratedelectricalopticalantennasfortransducingelectronsandphotonsatthenanoscale
AT gerardcolasdesfrancs electromigratedelectricalopticalantennasfortransducingelectronsandphotonsatthenanoscale
AT alexanderuskov electromigratedelectricalopticalantennasfortransducingelectronsandphotonsatthenanoscale
AT igorsmetanin electromigratedelectricalopticalantennasfortransducingelectronsandphotonsatthenanoscale
AT alexandrebouhelier electromigratedelectricalopticalantennasfortransducingelectronsandphotonsatthenanoscale
_version_ 1725017340263792640