Summary: | BACKGROUND:Numerous studies have confirmed the feasibility of active video games for clinical rehabilitation. To maximize training effectiveness, a personal program is necessary; however, little evidence is available to guide individualized game design for rehabilitation. This study assessed the perspectives and kinematic and temporal parameters of a participant's postural control in an interactive-visual virtual environment. METHODS:Twenty-four healthy participants performed one-leg standing by leg lifting when a posture frame appeared either in a first- or third-person perspective of a virtual environment. A foot force plate was used to detect the displacement of the center of pressure. A three-way mixed factor design was applied, where the perspective was the between-participant factor, and the leg-lifting times (0.7 and 2.7 seconds) and leg-lifting angles (30°and 90°) were the within-participant factors. The reaction time, accuracy of the movement, and ability to shift weight were the dependent variables. RESULTS:Regarding the reaction time and accuracy of the movement, there were no significant main effects of the perspective, leg-lifting time, or angle. For the ability to shift weight, however, both the perspective and time exerted significant main effects, F(1,22) = 6.429 and F(1,22) = 13.978, respectively. CONCLUSIONS:Participants could shift their weight more effectively in the third-person perspective of the virtual environment. The results can serve as a reference for future designs of interactive-visual virtual environment as applied to rehabilitation.
|