Summary: | This study hypothesizes that a novel oncolytic chimeric orthopoxvirus CF33-Fluc is imageable and targets colorectal cancer cells (CRCs). A novel chimeric orthopoxvirus (CF33) was constructed. The thymidine kinase locus was replaced with firefly luciferase (Fluc) to yield a recombinant virus—CF33-Fluc. In vitro cytotoxicity and viral replication assays were performed. In vivo CRC flank xenografts received single doses of intratumoral or intravenous CF33-Fluc. Viral biodistribution was analyzed via luciferase imaging and organ titers. CF33-Fluc infects, replicates in, and kills CRCs in vitro in a dose-dependent manner. CF33 has superior secretion of extracellular-enveloped virus versus all but one parental strain. Rapid tumor regression or stabilization occurred in vivo at a low dose over a short time period, regardless of the viral delivery method in the HCT-116 colorectal tumor xenograft model. Rapid luciferase expression in virus-infected tumor cells was associated with treatment response. CRC death occurs via necroptotic pathways. CF33-Fluc replicates in and kills colorectal cancer cells in vitro and in vivo regardless of delivery method. Expression of luciferase enables real-time tracking of viral replication. Despite the chimerism, CRC death occurs via standard poxvirus-induced mechanisms. Further studies are warranted in immunocompetent models. Keywords: extracellular enveloped virus, systemic therapy, viral therapy, gene expression, oncolytic virus
|