Liouville-type theorems for an elliptic system involving fractional Laplacian operators with mixed order

We study the nonexistence of nontrivial solutions for the nonlinear elliptic system $$\displaylines{ G_{\alpha,\beta,\theta}(u^{p},u^{q}) = v^{r}\cr G_{\lambda,\mu,\theta}(v^{s},v^{t}) = u^{m}\cr u,v\geq 0, }$$ where $0<\alpha,\beta,\lambda,\mu\leq 2$, $\theta\geq 0$, $m>q\geq p\geq 1$...

Full description

Bibliographic Details
Main Authors: Mohamed Jleli, Bessem Samet
Format: Article
Language:English
Published: Texas State University 2017-04-01
Series:Electronic Journal of Differential Equations
Subjects:
Online Access:http://ejde.math.txstate.edu/Volumes/2017/105/abstr.html
id doaj-9a4a9dac71cf494c950970d680c83af1
record_format Article
spelling doaj-9a4a9dac71cf494c950970d680c83af12020-11-25T00:11:23ZengTexas State UniversityElectronic Journal of Differential Equations1072-66912017-04-012017105,111Liouville-type theorems for an elliptic system involving fractional Laplacian operators with mixed orderMohamed Jleli0Bessem Samet1 King Saud Univ., Saudi Arabia King Saud Univ., Saudi Arabia We study the nonexistence of nontrivial solutions for the nonlinear elliptic system $$\displaylines{ G_{\alpha,\beta,\theta}(u^{p},u^{q}) = v^{r}\cr G_{\lambda,\mu,\theta}(v^{s},v^{t}) = u^{m}\cr u,v\geq 0, }$$ where $0<\alpha,\beta,\lambda,\mu\leq 2$, $\theta\geq 0$, $m>q\geq p\geq 1$, $r>t\geq s\geq 1$, and $G_{\alpha,\beta,\theta}$ is the fractional operator of mixed orders $\alpha,\beta$, defined by $$ G_{\alpha,\beta,\theta}(u,v)=(-\Delta_x)^{\alpha/2}u +|x|^{2\theta} (-\Delta_y)^{\beta/2}v, \quad \text{in }\mathbb{R}^{N_1} \times \mathbb{R}^{N_2}. $$ Here, $(-\Delta_x)^{\alpha/2}$, $0<\alpha<2$, is the fractional Laplacian operator of order $\alpha/2$ with respect to the variable $x\in \mathbb{R}^{N_1}$, and $(-\Delta_y)^{\beta/2}$, $0<\beta<2$, is the fractional Laplacian perator of order $\beta/2$ with respect to the variable $y\in \mathbb{R}^{N_2}$. Via a weak formulation approach, sufficient conditions are provided in terms of space dimension and system parameters.http://ejde.math.txstate.edu/Volumes/2017/105/abstr.htmlLiouville-type theoremnonexistencefractional Grushin operator
collection DOAJ
language English
format Article
sources DOAJ
author Mohamed Jleli
Bessem Samet
spellingShingle Mohamed Jleli
Bessem Samet
Liouville-type theorems for an elliptic system involving fractional Laplacian operators with mixed order
Electronic Journal of Differential Equations
Liouville-type theorem
nonexistence
fractional Grushin operator
author_facet Mohamed Jleli
Bessem Samet
author_sort Mohamed Jleli
title Liouville-type theorems for an elliptic system involving fractional Laplacian operators with mixed order
title_short Liouville-type theorems for an elliptic system involving fractional Laplacian operators with mixed order
title_full Liouville-type theorems for an elliptic system involving fractional Laplacian operators with mixed order
title_fullStr Liouville-type theorems for an elliptic system involving fractional Laplacian operators with mixed order
title_full_unstemmed Liouville-type theorems for an elliptic system involving fractional Laplacian operators with mixed order
title_sort liouville-type theorems for an elliptic system involving fractional laplacian operators with mixed order
publisher Texas State University
series Electronic Journal of Differential Equations
issn 1072-6691
publishDate 2017-04-01
description We study the nonexistence of nontrivial solutions for the nonlinear elliptic system $$\displaylines{ G_{\alpha,\beta,\theta}(u^{p},u^{q}) = v^{r}\cr G_{\lambda,\mu,\theta}(v^{s},v^{t}) = u^{m}\cr u,v\geq 0, }$$ where $0<\alpha,\beta,\lambda,\mu\leq 2$, $\theta\geq 0$, $m>q\geq p\geq 1$, $r>t\geq s\geq 1$, and $G_{\alpha,\beta,\theta}$ is the fractional operator of mixed orders $\alpha,\beta$, defined by $$ G_{\alpha,\beta,\theta}(u,v)=(-\Delta_x)^{\alpha/2}u +|x|^{2\theta} (-\Delta_y)^{\beta/2}v, \quad \text{in }\mathbb{R}^{N_1} \times \mathbb{R}^{N_2}. $$ Here, $(-\Delta_x)^{\alpha/2}$, $0<\alpha<2$, is the fractional Laplacian operator of order $\alpha/2$ with respect to the variable $x\in \mathbb{R}^{N_1}$, and $(-\Delta_y)^{\beta/2}$, $0<\beta<2$, is the fractional Laplacian perator of order $\beta/2$ with respect to the variable $y\in \mathbb{R}^{N_2}$. Via a weak formulation approach, sufficient conditions are provided in terms of space dimension and system parameters.
topic Liouville-type theorem
nonexistence
fractional Grushin operator
url http://ejde.math.txstate.edu/Volumes/2017/105/abstr.html
work_keys_str_mv AT mohamedjleli liouvilletypetheoremsforanellipticsysteminvolvingfractionallaplacianoperatorswithmixedorder
AT bessemsamet liouvilletypetheoremsforanellipticsysteminvolvingfractionallaplacianoperatorswithmixedorder
_version_ 1725404386806464512