Liouville-type theorems for an elliptic system involving fractional Laplacian operators with mixed order
We study the nonexistence of nontrivial solutions for the nonlinear elliptic system $$\displaylines{ G_{\alpha,\beta,\theta}(u^{p},u^{q}) = v^{r}\cr G_{\lambda,\mu,\theta}(v^{s},v^{t}) = u^{m}\cr u,v\geq 0, }$$ where $0<\alpha,\beta,\lambda,\mu\leq 2$, $\theta\geq 0$, $m>q\geq p\geq 1$...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Texas State University
2017-04-01
|
Series: | Electronic Journal of Differential Equations |
Subjects: | |
Online Access: | http://ejde.math.txstate.edu/Volumes/2017/105/abstr.html |
id |
doaj-9a4a9dac71cf494c950970d680c83af1 |
---|---|
record_format |
Article |
spelling |
doaj-9a4a9dac71cf494c950970d680c83af12020-11-25T00:11:23ZengTexas State UniversityElectronic Journal of Differential Equations1072-66912017-04-012017105,111Liouville-type theorems for an elliptic system involving fractional Laplacian operators with mixed orderMohamed Jleli0Bessem Samet1 King Saud Univ., Saudi Arabia King Saud Univ., Saudi Arabia We study the nonexistence of nontrivial solutions for the nonlinear elliptic system $$\displaylines{ G_{\alpha,\beta,\theta}(u^{p},u^{q}) = v^{r}\cr G_{\lambda,\mu,\theta}(v^{s},v^{t}) = u^{m}\cr u,v\geq 0, }$$ where $0<\alpha,\beta,\lambda,\mu\leq 2$, $\theta\geq 0$, $m>q\geq p\geq 1$, $r>t\geq s\geq 1$, and $G_{\alpha,\beta,\theta}$ is the fractional operator of mixed orders $\alpha,\beta$, defined by $$ G_{\alpha,\beta,\theta}(u,v)=(-\Delta_x)^{\alpha/2}u +|x|^{2\theta} (-\Delta_y)^{\beta/2}v, \quad \text{in }\mathbb{R}^{N_1} \times \mathbb{R}^{N_2}. $$ Here, $(-\Delta_x)^{\alpha/2}$, $0<\alpha<2$, is the fractional Laplacian operator of order $\alpha/2$ with respect to the variable $x\in \mathbb{R}^{N_1}$, and $(-\Delta_y)^{\beta/2}$, $0<\beta<2$, is the fractional Laplacian perator of order $\beta/2$ with respect to the variable $y\in \mathbb{R}^{N_2}$. Via a weak formulation approach, sufficient conditions are provided in terms of space dimension and system parameters.http://ejde.math.txstate.edu/Volumes/2017/105/abstr.htmlLiouville-type theoremnonexistencefractional Grushin operator |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Mohamed Jleli Bessem Samet |
spellingShingle |
Mohamed Jleli Bessem Samet Liouville-type theorems for an elliptic system involving fractional Laplacian operators with mixed order Electronic Journal of Differential Equations Liouville-type theorem nonexistence fractional Grushin operator |
author_facet |
Mohamed Jleli Bessem Samet |
author_sort |
Mohamed Jleli |
title |
Liouville-type theorems for an elliptic system involving fractional Laplacian operators with mixed order |
title_short |
Liouville-type theorems for an elliptic system involving fractional Laplacian operators with mixed order |
title_full |
Liouville-type theorems for an elliptic system involving fractional Laplacian operators with mixed order |
title_fullStr |
Liouville-type theorems for an elliptic system involving fractional Laplacian operators with mixed order |
title_full_unstemmed |
Liouville-type theorems for an elliptic system involving fractional Laplacian operators with mixed order |
title_sort |
liouville-type theorems for an elliptic system involving fractional laplacian operators with mixed order |
publisher |
Texas State University |
series |
Electronic Journal of Differential Equations |
issn |
1072-6691 |
publishDate |
2017-04-01 |
description |
We study the nonexistence of nontrivial solutions for the nonlinear
elliptic system
$$\displaylines{
G_{\alpha,\beta,\theta}(u^{p},u^{q}) = v^{r}\cr
G_{\lambda,\mu,\theta}(v^{s},v^{t}) = u^{m}\cr
u,v\geq 0,
}$$
where $0<\alpha,\beta,\lambda,\mu\leq 2$, $\theta\geq 0$, $m>q\geq p\geq 1$,
$r>t\geq s\geq 1$, and $G_{\alpha,\beta,\theta}$ is the fractional operator
of mixed orders $\alpha,\beta$, defined by
$$
G_{\alpha,\beta,\theta}(u,v)=(-\Delta_x)^{\alpha/2}u
+|x|^{2\theta} (-\Delta_y)^{\beta/2}v, \quad \text{in }\mathbb{R}^{N_1}
\times \mathbb{R}^{N_2}.
$$
Here, $(-\Delta_x)^{\alpha/2}$, $0<\alpha<2$, is the fractional Laplacian
operator of order $\alpha/2$ with respect to the variable
$x\in \mathbb{R}^{N_1}$,
and $(-\Delta_y)^{\beta/2}$, $0<\beta<2$, is the fractional Laplacian
perator of order $\beta/2$ with respect to the variable
$y\in \mathbb{R}^{N_2}$.
Via a weak formulation approach, sufficient conditions are provided in terms
of space dimension and system parameters. |
topic |
Liouville-type theorem nonexistence fractional Grushin operator |
url |
http://ejde.math.txstate.edu/Volumes/2017/105/abstr.html |
work_keys_str_mv |
AT mohamedjleli liouvilletypetheoremsforanellipticsysteminvolvingfractionallaplacianoperatorswithmixedorder AT bessemsamet liouvilletypetheoremsforanellipticsysteminvolvingfractionallaplacianoperatorswithmixedorder |
_version_ |
1725404386806464512 |