Effect of non-eikonal corrections on azimuthal asymmetries in the color glass condensate
Abstract We analyse the azimuthal structure of two gluon correlations in the color glass condensate including those effects that result from relaxing the shockwave approximation for the target. Working in the Glasma graph approach suitable for collisions between dilute systems, we compute numericall...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2019-09-01
|
Series: | European Physical Journal C: Particles and Fields |
Online Access: | http://link.springer.com/article/10.1140/epjc/s10052-019-7315-1 |
Summary: | Abstract We analyse the azimuthal structure of two gluon correlations in the color glass condensate including those effects that result from relaxing the shockwave approximation for the target. Working in the Glasma graph approach suitable for collisions between dilute systems, we compute numerically the azimuthal distributions and show that both even and odd harmonics appear. We study their dependence on model parameters, energy of the collision, pseudorapidity and transverse momentum of the produced particles, and length of the target. While the contribution from non-eikonal corrections vanishes with increasing collision energy and becomes negligible at the energies of the Large Hadron Collider, it is found to be sizeable up to top energies at the Relativistic Heavy Ion Collider. |
---|---|
ISSN: | 1434-6044 1434-6052 |