Relative species abundance successfully predicts nestedness and interaction frequency of monthly pollination networks in an alpine meadow.

Plant-pollinator networks have been repeatedly reported as cumulative ones that are described with >1 years observations. However, such cumulative networks are composed of pairwise interactions recorded at different periods, and thus may not be able to reflect the reality of species interactions...

Full description

Bibliographic Details
Main Authors: Lei Hu, Yuran Dong, Shucun Sun
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2019-01-01
Series:PLoS ONE
Online Access:https://doi.org/10.1371/journal.pone.0224316
Description
Summary:Plant-pollinator networks have been repeatedly reported as cumulative ones that are described with >1 years observations. However, such cumulative networks are composed of pairwise interactions recorded at different periods, and thus may not be able to reflect the reality of species interactions in nature (e.g., early-flowering plants typically do not compete for shared pollinators with late-flowering plants, but they are assumed to do so in accumulated networks). Here, we examine the monthly sampling structure of an alpine plant-pollinator bipartite network over a two-year period to determine whether relative species abundance and species traits better explain the network structure of monthly networks than yearly ones. Although community composition and species abundance varied from one month to another, the monthly networks (as well as the yearly networks described with annual pooled data) had a highly nested structure, in which specialists directly interact with generalist partners. Moreover, relative species abundance predicted the nestedness in both the monthly and yearly networks and accounted for a statistically significant percentage of the variation (i.e., 20%-44%) in the pairwise interactions of monthly networks, but not yearly networks. The combination of relative species abundance and species traits (but not species traits only) showed a similar prediction power in terms of both network nestedness and pairwise interaction frequencies. Considering the previously recognized structural pattern and associated mechanisms of plant-pollinator networks, we propose that relative species abundance may be an important factor influencing both nestedness and interaction frequency of pollination networks.
ISSN:1932-6203