Investigations of Sidewall Passivation Technology on the Optical Performance for Smaller Size GaN-Based Micro-LEDs

Micro-light emitting diodes (Micro-LEDs) based on III-nitride semiconductors have become a research hotspot in the field of high-resolution display due to its unique advantages. However, the edge effect caused by inductively coupled plasma (ICP) dry etching in Micro-LEDs become significant with resp...

Full description

Bibliographic Details
Main Authors: Junchi Yu, Tao Tao, Bin Liu, Feifan Xu, Yao Zheng, Xuan Wang, Yimeng Sang, Yu Yan, Zili Xie, Shihao Liang, Dunjun Chen, Peng Chen, Xiangqian Xiu, Youdou Zheng, Rong Zhang
Format: Article
Language:English
Published: MDPI AG 2021-04-01
Series:Crystals
Subjects:
Online Access:https://www.mdpi.com/2073-4352/11/4/403
Description
Summary:Micro-light emitting diodes (Micro-LEDs) based on III-nitride semiconductors have become a research hotspot in the field of high-resolution display due to its unique advantages. However, the edge effect caused by inductively coupled plasma (ICP) dry etching in Micro-LEDs become significant with respect to the decreased chip size, resulting in a great reduction in device performance. In this article, sector-shaped GaN-based blue Micro-LEDs are designed and fabricated. Additionally, the device performance of different size Micro-LEDs with passivation are investigated with respect to those without passivation. Several methods have been applied to minimize the etching damage near the edge, including acid-base wet etching and SiO<sub>2</sub> passivation layer growth. The room temperature photoluminescence (PL) results demonstrate that the light emission intensity of Micro-LEDs can be significantly enhanced by optimized passivation process. PL mapping images show that the overall luminescence of properly passivated Micro-LEDs is enhanced, the uniformity is improved, and the effective luminescence area is increased. The recombination lifetime of carriers in Micro-LEDs are increased by the usage of passivation process, which proves the reduction in non-radiative recombination centers in Micro-LEDs and improved luminescence efficiency. As a result, the internal quantum efficiency (IQE) is improved from 14.9% to 37.6% for 10 μm Micro-LEDs, and from 18.3% to 26.9% for 5 μm Micro-LEDs.
ISSN:2073-4352