Stress wave method in dynamic resistance analysis of an explosion-proof valve

The paper presents the concept of a novel stress wave method (SWM) for determining the dynamic reaction of structural elements of an explosion-proof valve. The stress wave method is an original solution to the issue of the dynamic reaction of structural elements and systems. It is particularly recom...

Full description

Bibliographic Details
Main Authors: Bartłomiej Pieńko, Zbigniew Szcześniak
Format: Article
Language:English
Published: Wojskowa Akademia Techniczna, Redakcja Wydawnictw WAT, ul. gen. S. Kaliskiego 2, 00-908 Warszawa 2018-12-01
Series:Biuletyn Wojskowej Akademii Technicznej
Subjects:
Online Access:http://biuletynwat.pl/gicid/01.3001.0012.8497
Description
Summary:The paper presents the concept of a novel stress wave method (SWM) for determining the dynamic reaction of structural elements of an explosion-proof valve. The stress wave method is an original solution to the issue of the dynamic reaction of structural elements and systems. It is particularly recommended in the case of intensive percussive or explosive impacts. The method was developed by the author of works [14, 15]. It reflects the wave nature of stress development. The paper presents the origin, assumptions and the basic dependencies of the method. The characteristics of the method are illustrated by means of solutions to issues closely related to the requirements for testing the resistance of shelter explosion-proof valves. The description also includes a comparison of the calculation results with the results obtained by the finite element method (FEM) and the results of experimental tests. The possibility of significant differences between the compared solutions has been shown. It should be noted that geometric attenuation, reflections and interference of waves are natural for the dynamic reaction of an element and therefore for wave processes. These phenomena can significantly affect the distribution of the parameters of the sought dynamic reaction in space and time. The proposed method of analysis is distinguished by high accuracy of calculations. Keywords: stress waves, structural element vibrations, discrete models, differential solution, explosion- proof valve
ISSN:1234-5865