Some identities involving generalized Gegenbauer polynomials

Abstract In this paper, we investigate some interesting identities on the Bernoulli, Euler, Hermite and generalized Gegenbauer polynomials arising from the orthogonality of generalized Gegenbauer polynomials in the generalized inner product 〈 p 1 ( x ) , p 2 ( x ) 〉 = ∫ − α q p α q p ( α q − p 2 x 2...

Full description

Bibliographic Details
Main Author: Zhaoxiang Zhang
Format: Article
Language:English
Published: SpringerOpen 2017-12-01
Series:Advances in Difference Equations
Subjects:
Online Access:http://link.springer.com/article/10.1186/s13662-017-1445-2
id doaj-99d60281a67a4482b8651e330531e834
record_format Article
spelling doaj-99d60281a67a4482b8651e330531e8342020-11-24T21:08:05ZengSpringerOpenAdvances in Difference Equations1687-18472017-12-012017111210.1186/s13662-017-1445-2Some identities involving generalized Gegenbauer polynomialsZhaoxiang Zhang0School of Mathematical Sciences, Northwest UniversityAbstract In this paper, we investigate some interesting identities on the Bernoulli, Euler, Hermite and generalized Gegenbauer polynomials arising from the orthogonality of generalized Gegenbauer polynomials in the generalized inner product 〈 p 1 ( x ) , p 2 ( x ) 〉 = ∫ − α q p α q p ( α q − p 2 x 2 ) λ − 1 2 p 1 ( x ) p 2 ( x ) d x . $$\bigl\langle {{p_{1}}(x),{p_{2}}(x)} \bigr\rangle = \int_{ - \frac{{\sqrt{\alpha q}}}{p}}^{\frac{{\sqrt{ \alpha q} }}{p}} {{\bigl(\alpha q - p^{2}{x^{2}}\bigr)}^{\lambda - \frac{1}{2}}} {p_{1}}(x){p_{2}}(x)\,dx. $$http://link.springer.com/article/10.1186/s13662-017-1445-2generalized Gegenbauer polynomialsorthogonalitygeneralized inner product space
collection DOAJ
language English
format Article
sources DOAJ
author Zhaoxiang Zhang
spellingShingle Zhaoxiang Zhang
Some identities involving generalized Gegenbauer polynomials
Advances in Difference Equations
generalized Gegenbauer polynomials
orthogonality
generalized inner product space
author_facet Zhaoxiang Zhang
author_sort Zhaoxiang Zhang
title Some identities involving generalized Gegenbauer polynomials
title_short Some identities involving generalized Gegenbauer polynomials
title_full Some identities involving generalized Gegenbauer polynomials
title_fullStr Some identities involving generalized Gegenbauer polynomials
title_full_unstemmed Some identities involving generalized Gegenbauer polynomials
title_sort some identities involving generalized gegenbauer polynomials
publisher SpringerOpen
series Advances in Difference Equations
issn 1687-1847
publishDate 2017-12-01
description Abstract In this paper, we investigate some interesting identities on the Bernoulli, Euler, Hermite and generalized Gegenbauer polynomials arising from the orthogonality of generalized Gegenbauer polynomials in the generalized inner product 〈 p 1 ( x ) , p 2 ( x ) 〉 = ∫ − α q p α q p ( α q − p 2 x 2 ) λ − 1 2 p 1 ( x ) p 2 ( x ) d x . $$\bigl\langle {{p_{1}}(x),{p_{2}}(x)} \bigr\rangle = \int_{ - \frac{{\sqrt{\alpha q}}}{p}}^{\frac{{\sqrt{ \alpha q} }}{p}} {{\bigl(\alpha q - p^{2}{x^{2}}\bigr)}^{\lambda - \frac{1}{2}}} {p_{1}}(x){p_{2}}(x)\,dx. $$
topic generalized Gegenbauer polynomials
orthogonality
generalized inner product space
url http://link.springer.com/article/10.1186/s13662-017-1445-2
work_keys_str_mv AT zhaoxiangzhang someidentitiesinvolvinggeneralizedgegenbauerpolynomials
_version_ 1716760936150204416