Some identities involving generalized Gegenbauer polynomials
Abstract In this paper, we investigate some interesting identities on the Bernoulli, Euler, Hermite and generalized Gegenbauer polynomials arising from the orthogonality of generalized Gegenbauer polynomials in the generalized inner product 〈 p 1 ( x ) , p 2 ( x ) 〉 = ∫ − α q p α q p ( α q − p 2 x 2...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2017-12-01
|
Series: | Advances in Difference Equations |
Subjects: | |
Online Access: | http://link.springer.com/article/10.1186/s13662-017-1445-2 |
id |
doaj-99d60281a67a4482b8651e330531e834 |
---|---|
record_format |
Article |
spelling |
doaj-99d60281a67a4482b8651e330531e8342020-11-24T21:08:05ZengSpringerOpenAdvances in Difference Equations1687-18472017-12-012017111210.1186/s13662-017-1445-2Some identities involving generalized Gegenbauer polynomialsZhaoxiang Zhang0School of Mathematical Sciences, Northwest UniversityAbstract In this paper, we investigate some interesting identities on the Bernoulli, Euler, Hermite and generalized Gegenbauer polynomials arising from the orthogonality of generalized Gegenbauer polynomials in the generalized inner product 〈 p 1 ( x ) , p 2 ( x ) 〉 = ∫ − α q p α q p ( α q − p 2 x 2 ) λ − 1 2 p 1 ( x ) p 2 ( x ) d x . $$\bigl\langle {{p_{1}}(x),{p_{2}}(x)} \bigr\rangle = \int_{ - \frac{{\sqrt{\alpha q}}}{p}}^{\frac{{\sqrt{ \alpha q} }}{p}} {{\bigl(\alpha q - p^{2}{x^{2}}\bigr)}^{\lambda - \frac{1}{2}}} {p_{1}}(x){p_{2}}(x)\,dx. $$http://link.springer.com/article/10.1186/s13662-017-1445-2generalized Gegenbauer polynomialsorthogonalitygeneralized inner product space |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Zhaoxiang Zhang |
spellingShingle |
Zhaoxiang Zhang Some identities involving generalized Gegenbauer polynomials Advances in Difference Equations generalized Gegenbauer polynomials orthogonality generalized inner product space |
author_facet |
Zhaoxiang Zhang |
author_sort |
Zhaoxiang Zhang |
title |
Some identities involving generalized Gegenbauer polynomials |
title_short |
Some identities involving generalized Gegenbauer polynomials |
title_full |
Some identities involving generalized Gegenbauer polynomials |
title_fullStr |
Some identities involving generalized Gegenbauer polynomials |
title_full_unstemmed |
Some identities involving generalized Gegenbauer polynomials |
title_sort |
some identities involving generalized gegenbauer polynomials |
publisher |
SpringerOpen |
series |
Advances in Difference Equations |
issn |
1687-1847 |
publishDate |
2017-12-01 |
description |
Abstract In this paper, we investigate some interesting identities on the Bernoulli, Euler, Hermite and generalized Gegenbauer polynomials arising from the orthogonality of generalized Gegenbauer polynomials in the generalized inner product 〈 p 1 ( x ) , p 2 ( x ) 〉 = ∫ − α q p α q p ( α q − p 2 x 2 ) λ − 1 2 p 1 ( x ) p 2 ( x ) d x . $$\bigl\langle {{p_{1}}(x),{p_{2}}(x)} \bigr\rangle = \int_{ - \frac{{\sqrt{\alpha q}}}{p}}^{\frac{{\sqrt{ \alpha q} }}{p}} {{\bigl(\alpha q - p^{2}{x^{2}}\bigr)}^{\lambda - \frac{1}{2}}} {p_{1}}(x){p_{2}}(x)\,dx. $$ |
topic |
generalized Gegenbauer polynomials orthogonality generalized inner product space |
url |
http://link.springer.com/article/10.1186/s13662-017-1445-2 |
work_keys_str_mv |
AT zhaoxiangzhang someidentitiesinvolvinggeneralizedgegenbauerpolynomials |
_version_ |
1716760936150204416 |