Summary: | A carbon-based solid acid catalyst was prepared by the sulfonation of carbonized seed shells of Jatropha curcas (J. curcas L.). The structure of amorphous carbon consisting of polycyclic aromatic carbon sheets attached a high density of acidic SO3H groups (2.0 mmol · g−1) was identified with scanning electron microscopy (SEM), fourier transform infrared (FTIR) spectroscopy, powder X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The performance of the solid acid catalyst was evaluated for biodiesel production in the esterification of oleic acid with methanol. 95.7% yield of biodiesel was obtained after 2 h reaction and the conversions with reused catalyst varied in the range of 95.7% to 95.1%, showing better activity and stability than commercial catalyst amberlyst-46. It was also observed that the prepared catalyst showed enhanced activity in the transesterification of triolein with methanol when compared with other solid acid catalysts. A synergistic effect results from the high density of SO3H groups and the good access of reactants to the acidic sites can be used to explain the excellent catalytic activity, as well as the strong affinity between the hydrophilic reactants and the neutral OH groups bonded to the polycyclic aromatic carbon rings.
|