$d$-representability of simplicial complexes of fixed dimension

<p>Let <strong>K</strong> be a simplicial complex with vertex set <em>V</em> = <em>v</em><sub>1</sub>,…,<em>v</em><sub><em>n</em></sub>. The complex <strong>K</strong> is <em>d</em>-repr...

Full description

Bibliographic Details
Main Author: Martin Tancer
Format: Article
Language:English
Published: Carleton University 2011-11-01
Series:Journal of Computational Geometry
Online Access:http://jocg.org/index.php/jocg/article/view/73
id doaj-99ba0bc6960b48a8b266c91aa3b8bdbb
record_format Article
spelling doaj-99ba0bc6960b48a8b266c91aa3b8bdbb2020-11-24T22:58:35ZengCarleton UniversityJournal of Computational Geometry1920-180X2011-11-012110.20382/jocg.v2i1a920$d$-representability of simplicial complexes of fixed dimensionMartin Tancer0Department of Applied Mathematics, Charles University in Prague<p>Let <strong>K</strong> be a simplicial complex with vertex set <em>V</em> = <em>v</em><sub>1</sub>,…,<em>v</em><sub><em>n</em></sub>. The complex <strong>K</strong> is <em>d</em>-representable if there is a collection {<em>C</em><sub>1</sub>,…,<em>C</em><sub><em>n</em></sub>} of convex sets in <strong>R</strong><sup><em>d</em></sup> such that a subcollection {<em>C</em><sub><em>i</em><sub>1</sub></sub>,…,<em>C</em><sub><em>i</em><sub><em>j</em></sub></sub>} has a nonempty intersection if and only if {<em>v</em><sub><em>i</em><sub>1</sub></sub>,…,<em>v</em><sub><em>i</em><sub><em>j</em></sub></sub>} is a face of <strong>K</strong>.<br /><br />In 1967 Wegner proved that every simplicial complex of dimension <em>d</em> is (2<em>d</em>+1)-representable. He also conjectured that his bound is the best possible, i.e., that there are <em>d</em>-dimensional simplicial complexes which are not 2<em>d</em>-representable. However, he was not able to prove his conjecture.<br /><br />We prove that his suggestion was indeed right. Thus we add another piece to the puzzle of intersection patterns of convex sets in Euclidean space.</p>http://jocg.org/index.php/jocg/article/view/73
collection DOAJ
language English
format Article
sources DOAJ
author Martin Tancer
spellingShingle Martin Tancer
$d$-representability of simplicial complexes of fixed dimension
Journal of Computational Geometry
author_facet Martin Tancer
author_sort Martin Tancer
title $d$-representability of simplicial complexes of fixed dimension
title_short $d$-representability of simplicial complexes of fixed dimension
title_full $d$-representability of simplicial complexes of fixed dimension
title_fullStr $d$-representability of simplicial complexes of fixed dimension
title_full_unstemmed $d$-representability of simplicial complexes of fixed dimension
title_sort $d$-representability of simplicial complexes of fixed dimension
publisher Carleton University
series Journal of Computational Geometry
issn 1920-180X
publishDate 2011-11-01
description <p>Let <strong>K</strong> be a simplicial complex with vertex set <em>V</em> = <em>v</em><sub>1</sub>,…,<em>v</em><sub><em>n</em></sub>. The complex <strong>K</strong> is <em>d</em>-representable if there is a collection {<em>C</em><sub>1</sub>,…,<em>C</em><sub><em>n</em></sub>} of convex sets in <strong>R</strong><sup><em>d</em></sup> such that a subcollection {<em>C</em><sub><em>i</em><sub>1</sub></sub>,…,<em>C</em><sub><em>i</em><sub><em>j</em></sub></sub>} has a nonempty intersection if and only if {<em>v</em><sub><em>i</em><sub>1</sub></sub>,…,<em>v</em><sub><em>i</em><sub><em>j</em></sub></sub>} is a face of <strong>K</strong>.<br /><br />In 1967 Wegner proved that every simplicial complex of dimension <em>d</em> is (2<em>d</em>+1)-representable. He also conjectured that his bound is the best possible, i.e., that there are <em>d</em>-dimensional simplicial complexes which are not 2<em>d</em>-representable. However, he was not able to prove his conjecture.<br /><br />We prove that his suggestion was indeed right. Thus we add another piece to the puzzle of intersection patterns of convex sets in Euclidean space.</p>
url http://jocg.org/index.php/jocg/article/view/73
work_keys_str_mv AT martintancer drepresentabilityofsimplicialcomplexesoffixeddimension
_version_ 1725646752659275776