Information theoretic and machine learning approaches to quantify non-linear visual feature interaction underlying visual object recognition
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
BMC
2012-07-01
|
Series: | BMC Neuroscience |
id |
doaj-99b5a312d9364487a89b011c75b8b004 |
---|---|
record_format |
Article |
spelling |
doaj-99b5a312d9364487a89b011c75b8b0042020-11-24T20:41:26ZengBMCBMC Neuroscience1471-22022012-07-0113Suppl 1P210.1186/1471-2202-13-S1-P2Information theoretic and machine learning approaches to quantify non-linear visual feature interaction underlying visual object recognitionAlemi-Neissi AlirezaBaldassi CarloBraunstein AlfredoPagnani AndreaZecchina RiccardoZoccolan Davide |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Alemi-Neissi Alireza Baldassi Carlo Braunstein Alfredo Pagnani Andrea Zecchina Riccardo Zoccolan Davide |
spellingShingle |
Alemi-Neissi Alireza Baldassi Carlo Braunstein Alfredo Pagnani Andrea Zecchina Riccardo Zoccolan Davide Information theoretic and machine learning approaches to quantify non-linear visual feature interaction underlying visual object recognition BMC Neuroscience |
author_facet |
Alemi-Neissi Alireza Baldassi Carlo Braunstein Alfredo Pagnani Andrea Zecchina Riccardo Zoccolan Davide |
author_sort |
Alemi-Neissi Alireza |
title |
Information theoretic and machine learning approaches to quantify non-linear visual feature interaction underlying visual object recognition |
title_short |
Information theoretic and machine learning approaches to quantify non-linear visual feature interaction underlying visual object recognition |
title_full |
Information theoretic and machine learning approaches to quantify non-linear visual feature interaction underlying visual object recognition |
title_fullStr |
Information theoretic and machine learning approaches to quantify non-linear visual feature interaction underlying visual object recognition |
title_full_unstemmed |
Information theoretic and machine learning approaches to quantify non-linear visual feature interaction underlying visual object recognition |
title_sort |
information theoretic and machine learning approaches to quantify non-linear visual feature interaction underlying visual object recognition |
publisher |
BMC |
series |
BMC Neuroscience |
issn |
1471-2202 |
publishDate |
2012-07-01 |
work_keys_str_mv |
AT alemineissialireza informationtheoreticandmachinelearningapproachestoquantifynonlinearvisualfeatureinteractionunderlyingvisualobjectrecognition AT baldassicarlo informationtheoreticandmachinelearningapproachestoquantifynonlinearvisualfeatureinteractionunderlyingvisualobjectrecognition AT braunsteinalfredo informationtheoreticandmachinelearningapproachestoquantifynonlinearvisualfeatureinteractionunderlyingvisualobjectrecognition AT pagnaniandrea informationtheoreticandmachinelearningapproachestoquantifynonlinearvisualfeatureinteractionunderlyingvisualobjectrecognition AT zecchinariccardo informationtheoreticandmachinelearningapproachestoquantifynonlinearvisualfeatureinteractionunderlyingvisualobjectrecognition AT zoccolandavide informationtheoreticandmachinelearningapproachestoquantifynonlinearvisualfeatureinteractionunderlyingvisualobjectrecognition |
_version_ |
1716825091968335872 |