Computational analysis of MHD flow, heat and mass transfer in trapezoidal porous cavity

Numerical simulations are conducted for two-dimensional steady-state double diffusive flow in a trapezoidal porous cavity, submitted to axial magnetic field. The Darcy equation, including Brinkmamn and Forchheimer terms account for viscous and inertia effects, respectively is used for the momentum e...

Full description

Bibliographic Details
Main Author: Younsi Ramdane
Format: Article
Language:English
Published: VINCA Institute of Nuclear Sciences 2009-01-01
Series:Thermal Science
Subjects:
Online Access:http://www.doiserbia.nb.rs/img/doi/0354-9836/2009/0354-98360901013Y.pdf
Description
Summary:Numerical simulations are conducted for two-dimensional steady-state double diffusive flow in a trapezoidal porous cavity, submitted to axial magnetic field. The Darcy equation, including Brinkmamn and Forchheimer terms account for viscous and inertia effects, respectively is used for the momentum equation, and a SIMPLER algorithm, based on finite volume approach is used to solve the pressure-velocity coupling. An extensive series of numerical simulations is conducted in the range: 103 ≤ Ra ≤ 106,1 ≤ Ha ≤ 102, Da =10-5, N = 1, and Le = 10. It is shown that the application of a transverse magnetic field normal to the flow direction decreases the Nusselt number and Sherwood number. Illustrative graphs are presented.
ISSN:0354-9836
2334-7163