Phylogenetic analysis and phenotypic characterisatics of two Tibet EV-C96 strains
Abstract Background Enterovirus C96 (EV-C96) is a newly named type of enterovirus belonging to species C, and the prototype strain (BAN00–10488) was firstly isolated in 2000 from a stool specimen of a patient with acute flaccid paralysis in Bangladesh. In this study, we report the genomic and phenot...
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
BMC
2019-03-01
|
Series: | Virology Journal |
Subjects: | |
Online Access: | http://link.springer.com/article/10.1186/s12985-019-1151-7 |
id |
doaj-998806e2fd914ee593c0d07659e4d396 |
---|---|
record_format |
Article |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Lan Hu Yong Zhang Mei Hong Qin Fan Dongmei Yan Shuangli Zhu Dongyan Wang Wenbo Xu |
spellingShingle |
Lan Hu Yong Zhang Mei Hong Qin Fan Dongmei Yan Shuangli Zhu Dongyan Wang Wenbo Xu Phylogenetic analysis and phenotypic characterisatics of two Tibet EV-C96 strains Virology Journal Enterovirus C96 Cell sensitivity Phylogenetic analysis Recombinant |
author_facet |
Lan Hu Yong Zhang Mei Hong Qin Fan Dongmei Yan Shuangli Zhu Dongyan Wang Wenbo Xu |
author_sort |
Lan Hu |
title |
Phylogenetic analysis and phenotypic characterisatics of two Tibet EV-C96 strains |
title_short |
Phylogenetic analysis and phenotypic characterisatics of two Tibet EV-C96 strains |
title_full |
Phylogenetic analysis and phenotypic characterisatics of two Tibet EV-C96 strains |
title_fullStr |
Phylogenetic analysis and phenotypic characterisatics of two Tibet EV-C96 strains |
title_full_unstemmed |
Phylogenetic analysis and phenotypic characterisatics of two Tibet EV-C96 strains |
title_sort |
phylogenetic analysis and phenotypic characterisatics of two tibet ev-c96 strains |
publisher |
BMC |
series |
Virology Journal |
issn |
1743-422X |
publishDate |
2019-03-01 |
description |
Abstract Background Enterovirus C96 (EV-C96) is a newly named type of enterovirus belonging to species C, and the prototype strain (BAN00–10488) was firstly isolated in 2000 from a stool specimen of a patient with acute flaccid paralysis in Bangladesh. In this study, we report the genomic and phenotypic characteristics of two EV-C96 strains isolated from individuals from the Tibet Autonomous Region of China. Methods Human rhabdomyosarcoma (RD), human laryngeal epidermoid carcinoma (HEp-2), and human cervical cancer (Hela) cells were infected with the Tibet EV-C96 strains, and enterovirus RNA in the cell culture was detected with a real time RT-PCR-based enterovirus screening method. The temperature sensitivity of Tibet EV-C96 strains were assayed on a monolayer of RD cells in 24-well plates. Full-length genome sequencing was performed by a ‘primer-walking’ strategy, and the evolutionary history of EV-C96 was studied by maximum likelihood analysis. Results Strain 2005-T49 grew in all three kinds of cells, and it was not temperature sensitive. In contrast, none of the three cells produced CPE for strain 2012-94H. Phylogenetic analysis of the two Tibetan viruses, other EV-C96 strains, and EV-C prototypes showed that EV-C96 strains were grouped into three clusters (Cluster1–3) based on their VP1 sequences, which may represent three genotypes. Phylogenetic trees based on the P2 and P3 regions highlighted the difference between Chinese EV-C96 strains and the EV-C96 prototype strain BAN-10488. All Chinese strains formed a cluster separate from BAN-10488, which clustered with CV-A1/CV-A22/CV-A19. Conclusions There is genetic variability between EV-C96 strains which suggest that at least few genetic lineages co-exist and there has been some degree of circulation in different geographical regions for some time. Some recombination events must have occurred during EV-C96 evolution as EV-C96 isolates cluster with different EV-C prototype strains in phylogenetic trees in different genomic regions. However, recombination does not seem to have occurred frequently as EV-C96 isolates from different years and locations appear to cluster together in all genomic regions analysed. These findings expand the understanding of the characterization of EV-C96 and are meaningful for the surveillance of the virus. |
topic |
Enterovirus C96 Cell sensitivity Phylogenetic analysis Recombinant |
url |
http://link.springer.com/article/10.1186/s12985-019-1151-7 |
work_keys_str_mv |
AT lanhu phylogeneticanalysisandphenotypiccharacterisaticsoftwotibetevc96strains AT yongzhang phylogeneticanalysisandphenotypiccharacterisaticsoftwotibetevc96strains AT meihong phylogeneticanalysisandphenotypiccharacterisaticsoftwotibetevc96strains AT qinfan phylogeneticanalysisandphenotypiccharacterisaticsoftwotibetevc96strains AT dongmeiyan phylogeneticanalysisandphenotypiccharacterisaticsoftwotibetevc96strains AT shuanglizhu phylogeneticanalysisandphenotypiccharacterisaticsoftwotibetevc96strains AT dongyanwang phylogeneticanalysisandphenotypiccharacterisaticsoftwotibetevc96strains AT wenboxu phylogeneticanalysisandphenotypiccharacterisaticsoftwotibetevc96strains |
_version_ |
1724929733713461248 |
spelling |
doaj-998806e2fd914ee593c0d07659e4d3962020-11-25T02:07:47ZengBMCVirology Journal1743-422X2019-03-011611910.1186/s12985-019-1151-7Phylogenetic analysis and phenotypic characterisatics of two Tibet EV-C96 strainsLan Hu0Yong Zhang1Mei Hong2Qin Fan3Dongmei Yan4Shuangli Zhu5Dongyan Wang6Wenbo Xu7WHO WPRO Regional Polio Reference Laboratory and NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and PreventionWHO WPRO Regional Polio Reference Laboratory and NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and PreventionTibet Center for Disease Control and PreventionWHO WPRO Regional Polio Reference Laboratory and NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and PreventionWHO WPRO Regional Polio Reference Laboratory and NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and PreventionWHO WPRO Regional Polio Reference Laboratory and NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and PreventionWHO WPRO Regional Polio Reference Laboratory and NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and PreventionWHO WPRO Regional Polio Reference Laboratory and NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and PreventionAbstract Background Enterovirus C96 (EV-C96) is a newly named type of enterovirus belonging to species C, and the prototype strain (BAN00–10488) was firstly isolated in 2000 from a stool specimen of a patient with acute flaccid paralysis in Bangladesh. In this study, we report the genomic and phenotypic characteristics of two EV-C96 strains isolated from individuals from the Tibet Autonomous Region of China. Methods Human rhabdomyosarcoma (RD), human laryngeal epidermoid carcinoma (HEp-2), and human cervical cancer (Hela) cells were infected with the Tibet EV-C96 strains, and enterovirus RNA in the cell culture was detected with a real time RT-PCR-based enterovirus screening method. The temperature sensitivity of Tibet EV-C96 strains were assayed on a monolayer of RD cells in 24-well plates. Full-length genome sequencing was performed by a ‘primer-walking’ strategy, and the evolutionary history of EV-C96 was studied by maximum likelihood analysis. Results Strain 2005-T49 grew in all three kinds of cells, and it was not temperature sensitive. In contrast, none of the three cells produced CPE for strain 2012-94H. Phylogenetic analysis of the two Tibetan viruses, other EV-C96 strains, and EV-C prototypes showed that EV-C96 strains were grouped into three clusters (Cluster1–3) based on their VP1 sequences, which may represent three genotypes. Phylogenetic trees based on the P2 and P3 regions highlighted the difference between Chinese EV-C96 strains and the EV-C96 prototype strain BAN-10488. All Chinese strains formed a cluster separate from BAN-10488, which clustered with CV-A1/CV-A22/CV-A19. Conclusions There is genetic variability between EV-C96 strains which suggest that at least few genetic lineages co-exist and there has been some degree of circulation in different geographical regions for some time. Some recombination events must have occurred during EV-C96 evolution as EV-C96 isolates cluster with different EV-C prototype strains in phylogenetic trees in different genomic regions. However, recombination does not seem to have occurred frequently as EV-C96 isolates from different years and locations appear to cluster together in all genomic regions analysed. These findings expand the understanding of the characterization of EV-C96 and are meaningful for the surveillance of the virus.http://link.springer.com/article/10.1186/s12985-019-1151-7Enterovirus C96Cell sensitivityPhylogenetic analysisRecombinant |