Data mining for environmental analysis and diagnostic: a case study of upwelling ecosystem of Arraial do Cabo
The Brazilian coastal zone presents a large extension and a variety of environments. Nevertheless, little is known about biological diversity and ecosystem dynamics. Environmental changes always occur; however, it is important to distinguish natural from anthropic variability. Under these scenarios,...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Universidade de São Paulo
2008-03-01
|
Series: | Brazilian Journal of Oceanography |
Subjects: | |
Online Access: | http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1679-87592008000100001 |
Summary: | The Brazilian coastal zone presents a large extension and a variety of environments. Nevertheless, little is known about biological diversity and ecosystem dynamics. Environmental changes always occur; however, it is important to distinguish natural from anthropic variability. Under these scenarios, the aim of this work is to present a Data Mining methodology able to access the quality and health levels of the environmental conditions through the biological integrity concept. A ten-year time series of physical, chemical and biological parameters from an influenced upwelling area of Arraial do Cabo-RJ were used to generate a classification model based on association rules. The model recognizes seven different classes of water based on biological diversity and a new trophic index (PLIX). Artificial neural networks were evolved and optimized by genetic algorithms to forecast these indices, enabling environmental diagnostic to be made taking into account control mechanisms of topology, stability and complex behavioral properties of food web.<br>A zona costeira brasileira apresenta grande extensão e variedade de ambientes. Contudo, pouco se sabe sobre sua diversidade biológica e o funcionamento dos ecossistemas. Como mudanças ambientais são constantes, é muito importante distinguir entre variabilidade natural e antrópica. Nesse cenário, o objetivo deste trabalho é apresentar a metodologia para o desenvolvimento de um Sistema Inteligente de Gerenciamento Integrado do Ecossistema Costeiro (SIGIEC) capaz de acessar o nível de qualidade e saúde ambiental através do conceito de Integridade Biológica. Foram usadas séries temporais de dez anos de parâmetros físicos, químicos e biológicos para extrair conhecimento e gerar modelos de regras de associação para classificar sete diferentes tipos de condições ambientais, analisadas através da diversidade biológica e um novo índice trófico (PLIX). Redes neurais artificiais foram otimizadas por algoritmos genéticos para fazer predições desses índices e apresenta-se um diagnóstico ambiental baseado na análise dos mecanismos de controle da topologia, estabilidade e propriedades do comportamento complexo de redes alimentares. |
---|---|
ISSN: | 1679-8759 1982-436X |