Transition from fractional to classical Stokes–Einstein behaviour in simple fluids
An optical technique for tracking single particles has been used to evaluate the particle diameter at which diffusion transitions from molecular behaviour described by the fractional Stokes–Einstein relationship to particle behaviour described by the classical Stokes–Einstein relationship. The resul...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
The Royal Society
2017-01-01
|
Series: | Royal Society Open Science |
Subjects: | |
Online Access: | https://royalsocietypublishing.org/doi/pdf/10.1098/rsos.170507 |
Summary: | An optical technique for tracking single particles has been used to evaluate the particle diameter at which diffusion transitions from molecular behaviour described by the fractional Stokes–Einstein relationship to particle behaviour described by the classical Stokes–Einstein relationship. The results confirm a prior prediction from molecular dynamic simulations that there is a particle size at which transition occurs and show it is inversely dependent on concentration and viscosity but independent of particle density. For concentrations in the range 5 × 10−3 to 5 × 10−6 mg ml−1 and viscosities from 0.8 to 150 mPa s, the transition was found to occur in the diameter range 150–300 nm. |
---|---|
ISSN: | 2054-5703 |