A Scale-up of Energy-Cycle Analysis on Processing Non-Woven Flax/PLA Tape and Triaxial Glass Fibre Fabric for Composites
In the drive towards a sustainable bio-economy, a growing interest exists in the development of composite materials using renewable natural resources. This paper explores the life cycle assessment of processing of Flax fibre reinforced polylactic acid (PLA), with a comparison of glass fibre triaxial...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2019-11-01
|
Series: | Journal of Manufacturing and Materials Processing |
Subjects: | |
Online Access: | https://www.mdpi.com/2504-4494/3/4/92 |
id |
doaj-993db4f975304a3caf6d9879b89ae3fa |
---|---|
record_format |
Article |
spelling |
doaj-993db4f975304a3caf6d9879b89ae3fa2020-11-24T21:59:10ZengMDPI AGJournal of Manufacturing and Materials Processing2504-44942019-11-01349210.3390/jmmp3040092jmmp3040092A Scale-up of Energy-Cycle Analysis on Processing Non-Woven Flax/PLA Tape and Triaxial Glass Fibre Fabric for CompositesGilles Tchana Toffe0Sikiru Oluwarotimi Ismail1Diogo Montalvão2Jason Knight3Guogang Ren4School of Engineering and Computer Science, University of Hertfordshire, Hatfield AL10 9AB, UKSchool of Engineering and Computer Science, University of Hertfordshire, Hatfield AL10 9AB, UKDepartment of Design and Engineering, Faculty of Science and Technology, Bournemouth University, Bournemouth BH12 5BB, UKSchool of Mechanical and Design Engineering, Faculty of Technology, University of Portsmouth, Portsmouth PO1 3DJ, UKSchool of Engineering and Computer Science, University of Hertfordshire, Hatfield AL10 9AB, UKIn the drive towards a sustainable bio-economy, a growing interest exists in the development of composite materials using renewable natural resources. This paper explores the life cycle assessment of processing of Flax fibre reinforced polylactic acid (PLA), with a comparison of glass fibre triaxial fabric in the production process. The use of hydrocarbon fossil resources and synthetic fibres, such as glass and carbon, have caused severe environmental impacts in their entire life cycles. Whereas, Flax/PLA is one of the cornerstones for the sustainable economic growth of natural fibre composites. In this study, the manufacturing processes for the production of Flax/PLA tape and triaxial glass fibre were evaluated through a gate-to-gate life cycle assessment (LCA). The assessment was based on an input-output model to estimate energy demand and environmental impacts. The quality of the natural hybrid composite produced and cost-effectiveness of their LCA was dependent on their roving processing speeds and temperature applied to both the Flax/PLA tape and triaxial glass fabrics during processing. The optimum processing condition was found to be at a maximum of 4 m/min at a constant temperature of 170 °C. In contrast, the optimum for normal triaxial glass fibre production was at a slower speed of 1 m/min using a roving glass fibre laminating machine. The results showed that when the Flax and PLA were combined to produce new composite material in the form of a flax/PLA tape, energy consumption was 0.25 MJ/kg, which is lower than the 0.8 MJ/kg used for glass fibre fabric process. Flax/PLA tape and glass fibre fabric composites have a carbon footprint equivalent to 0.036 kg CO<sub>2</sub> and 0.11 kg CO<sub>2,</sub> respectively, under the same manufacturing conditions. These are within the technical requirements in the composites industry. The manufacturing process adopted to transform Flax/PLA into a similar tape composite was considerably quicker than that of woven glass fibre fabric for composite tape. This work elucidated the relationship of the energy consumptions of the two materials processes by using a standard LCA analytical methodology. The outcomes supported an alternative option for replacement of some conventional composite materials for the automotive industry. Most importantly, the natural fibre composite production is shown to result in an economic benefit and reduced environmental impact.https://www.mdpi.com/2504-4494/3/4/92flax fibrepolylactic acid (pla)renewable raw materialstriaxial glass fibreenergy consumptioncarbon footprintlife cycle assessment (lca) |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Gilles Tchana Toffe Sikiru Oluwarotimi Ismail Diogo Montalvão Jason Knight Guogang Ren |
spellingShingle |
Gilles Tchana Toffe Sikiru Oluwarotimi Ismail Diogo Montalvão Jason Knight Guogang Ren A Scale-up of Energy-Cycle Analysis on Processing Non-Woven Flax/PLA Tape and Triaxial Glass Fibre Fabric for Composites Journal of Manufacturing and Materials Processing flax fibre polylactic acid (pla) renewable raw materials triaxial glass fibre energy consumption carbon footprint life cycle assessment (lca) |
author_facet |
Gilles Tchana Toffe Sikiru Oluwarotimi Ismail Diogo Montalvão Jason Knight Guogang Ren |
author_sort |
Gilles Tchana Toffe |
title |
A Scale-up of Energy-Cycle Analysis on Processing Non-Woven Flax/PLA Tape and Triaxial Glass Fibre Fabric for Composites |
title_short |
A Scale-up of Energy-Cycle Analysis on Processing Non-Woven Flax/PLA Tape and Triaxial Glass Fibre Fabric for Composites |
title_full |
A Scale-up of Energy-Cycle Analysis on Processing Non-Woven Flax/PLA Tape and Triaxial Glass Fibre Fabric for Composites |
title_fullStr |
A Scale-up of Energy-Cycle Analysis on Processing Non-Woven Flax/PLA Tape and Triaxial Glass Fibre Fabric for Composites |
title_full_unstemmed |
A Scale-up of Energy-Cycle Analysis on Processing Non-Woven Flax/PLA Tape and Triaxial Glass Fibre Fabric for Composites |
title_sort |
scale-up of energy-cycle analysis on processing non-woven flax/pla tape and triaxial glass fibre fabric for composites |
publisher |
MDPI AG |
series |
Journal of Manufacturing and Materials Processing |
issn |
2504-4494 |
publishDate |
2019-11-01 |
description |
In the drive towards a sustainable bio-economy, a growing interest exists in the development of composite materials using renewable natural resources. This paper explores the life cycle assessment of processing of Flax fibre reinforced polylactic acid (PLA), with a comparison of glass fibre triaxial fabric in the production process. The use of hydrocarbon fossil resources and synthetic fibres, such as glass and carbon, have caused severe environmental impacts in their entire life cycles. Whereas, Flax/PLA is one of the cornerstones for the sustainable economic growth of natural fibre composites. In this study, the manufacturing processes for the production of Flax/PLA tape and triaxial glass fibre were evaluated through a gate-to-gate life cycle assessment (LCA). The assessment was based on an input-output model to estimate energy demand and environmental impacts. The quality of the natural hybrid composite produced and cost-effectiveness of their LCA was dependent on their roving processing speeds and temperature applied to both the Flax/PLA tape and triaxial glass fabrics during processing. The optimum processing condition was found to be at a maximum of 4 m/min at a constant temperature of 170 °C. In contrast, the optimum for normal triaxial glass fibre production was at a slower speed of 1 m/min using a roving glass fibre laminating machine. The results showed that when the Flax and PLA were combined to produce new composite material in the form of a flax/PLA tape, energy consumption was 0.25 MJ/kg, which is lower than the 0.8 MJ/kg used for glass fibre fabric process. Flax/PLA tape and glass fibre fabric composites have a carbon footprint equivalent to 0.036 kg CO<sub>2</sub> and 0.11 kg CO<sub>2,</sub> respectively, under the same manufacturing conditions. These are within the technical requirements in the composites industry. The manufacturing process adopted to transform Flax/PLA into a similar tape composite was considerably quicker than that of woven glass fibre fabric for composite tape. This work elucidated the relationship of the energy consumptions of the two materials processes by using a standard LCA analytical methodology. The outcomes supported an alternative option for replacement of some conventional composite materials for the automotive industry. Most importantly, the natural fibre composite production is shown to result in an economic benefit and reduced environmental impact. |
topic |
flax fibre polylactic acid (pla) renewable raw materials triaxial glass fibre energy consumption carbon footprint life cycle assessment (lca) |
url |
https://www.mdpi.com/2504-4494/3/4/92 |
work_keys_str_mv |
AT gillestchanatoffe ascaleupofenergycycleanalysisonprocessingnonwovenflaxplatapeandtriaxialglassfibrefabricforcomposites AT sikiruoluwarotimiismail ascaleupofenergycycleanalysisonprocessingnonwovenflaxplatapeandtriaxialglassfibrefabricforcomposites AT diogomontalvao ascaleupofenergycycleanalysisonprocessingnonwovenflaxplatapeandtriaxialglassfibrefabricforcomposites AT jasonknight ascaleupofenergycycleanalysisonprocessingnonwovenflaxplatapeandtriaxialglassfibrefabricforcomposites AT guogangren ascaleupofenergycycleanalysisonprocessingnonwovenflaxplatapeandtriaxialglassfibrefabricforcomposites AT gillestchanatoffe scaleupofenergycycleanalysisonprocessingnonwovenflaxplatapeandtriaxialglassfibrefabricforcomposites AT sikiruoluwarotimiismail scaleupofenergycycleanalysisonprocessingnonwovenflaxplatapeandtriaxialglassfibrefabricforcomposites AT diogomontalvao scaleupofenergycycleanalysisonprocessingnonwovenflaxplatapeandtriaxialglassfibrefabricforcomposites AT jasonknight scaleupofenergycycleanalysisonprocessingnonwovenflaxplatapeandtriaxialglassfibrefabricforcomposites AT guogangren scaleupofenergycycleanalysisonprocessingnonwovenflaxplatapeandtriaxialglassfibrefabricforcomposites |
_version_ |
1725848590252769280 |