Decentralized Poisson Multi-Bernoulli Filtering for Vehicle Tracking
A decentralized Poisson multi-Bernoulli filter is proposed to track multiple vehicles using multiple high-resolution sensors. Independent filters estimate the vehicles' presence, state, and shape using a Gaussian process extent model; a decentralized filter is realized through fusion of the fil...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2020-01-01
|
Series: | IEEE Access |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/9136678/ |
id |
doaj-993b882b13fc4db2903ebfe93b32a7ab |
---|---|
record_format |
Article |
spelling |
doaj-993b882b13fc4db2903ebfe93b32a7ab2021-03-30T02:19:18ZengIEEEIEEE Access2169-35362020-01-01812641412642710.1109/ACCESS.2020.30080079136678Decentralized Poisson Multi-Bernoulli Filtering for Vehicle TrackingMarkus Frohle0https://orcid.org/0000-0002-5274-2933Karl Granstrom1https://orcid.org/0000-0002-3450-988XHenk Wymeersch2https://orcid.org/0000-0002-1298-6159Zenuity, Gothenburg, AB, SwedenEmbark Trucks Inc., San Francisco, CA, USADepartment of Electrical Engineering, Chalmers University of Technology, Gothenburg, SwedenA decentralized Poisson multi-Bernoulli filter is proposed to track multiple vehicles using multiple high-resolution sensors. Independent filters estimate the vehicles' presence, state, and shape using a Gaussian process extent model; a decentralized filter is realized through fusion of the filters posterior densities. An efficient implementation is achieved by parametric state representation, utilization of single hypothesis tracks, and fusion of vehicle information based on a fusion mapping. Numerical results demonstrate the performance.https://ieeexplore.ieee.org/document/9136678/Gaussian processesmultitarget trackingposterior fusiontarget extent |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Markus Frohle Karl Granstrom Henk Wymeersch |
spellingShingle |
Markus Frohle Karl Granstrom Henk Wymeersch Decentralized Poisson Multi-Bernoulli Filtering for Vehicle Tracking IEEE Access Gaussian processes multitarget tracking posterior fusion target extent |
author_facet |
Markus Frohle Karl Granstrom Henk Wymeersch |
author_sort |
Markus Frohle |
title |
Decentralized Poisson Multi-Bernoulli Filtering for Vehicle Tracking |
title_short |
Decentralized Poisson Multi-Bernoulli Filtering for Vehicle Tracking |
title_full |
Decentralized Poisson Multi-Bernoulli Filtering for Vehicle Tracking |
title_fullStr |
Decentralized Poisson Multi-Bernoulli Filtering for Vehicle Tracking |
title_full_unstemmed |
Decentralized Poisson Multi-Bernoulli Filtering for Vehicle Tracking |
title_sort |
decentralized poisson multi-bernoulli filtering for vehicle tracking |
publisher |
IEEE |
series |
IEEE Access |
issn |
2169-3536 |
publishDate |
2020-01-01 |
description |
A decentralized Poisson multi-Bernoulli filter is proposed to track multiple vehicles using multiple high-resolution sensors. Independent filters estimate the vehicles' presence, state, and shape using a Gaussian process extent model; a decentralized filter is realized through fusion of the filters posterior densities. An efficient implementation is achieved by parametric state representation, utilization of single hypothesis tracks, and fusion of vehicle information based on a fusion mapping. Numerical results demonstrate the performance. |
topic |
Gaussian processes multitarget tracking posterior fusion target extent |
url |
https://ieeexplore.ieee.org/document/9136678/ |
work_keys_str_mv |
AT markusfrohle decentralizedpoissonmultibernoullifilteringforvehicletracking AT karlgranstrom decentralizedpoissonmultibernoullifilteringforvehicletracking AT henkwymeersch decentralizedpoissonmultibernoullifilteringforvehicletracking |
_version_ |
1724185434223804416 |