The stability and degradation kinetics of acetylsalicylic acid in different organic solutions revisited – an UHPLC–ESI-QTOF spectrometry study

Ultra high performance liquid chromatography (UHPLC), coupled with accurate quadrupole-time-of-flight (Q-TOF) mass spectrometry, was used for the stability study of acetylsalicylic acid within a variety of different organic solutions: methanol, ethanol, propan-2-ol, acetonitrile, tetrahydrofuran and...

Full description

Bibliographic Details
Main Authors: Skibinski Robert, Komsta Lukasz
Format: Article
Language:English
Published: Sciendo 2016-04-01
Series:Current Issues in Pharmacy and Medical Sciences
Subjects:
esi
Online Access:https://doi.org/10.1515/cipms-2016-0009
Description
Summary:Ultra high performance liquid chromatography (UHPLC), coupled with accurate quadrupole-time-of-flight (Q-TOF) mass spectrometry, was used for the stability study of acetylsalicylic acid within a variety of different organic solutions: methanol, ethanol, propan-2-ol, acetonitrile, tetrahydrofuran and 1,4-dioxane. With the use of gradient elution chromatography and mass spectrometry detection in negative ionization, MS and MS/MS spectra were recorded simultaneously. In addition, quantitative, as well as qualitative analysis was performed during one assay. The stability of acetylsalicylic acid in such solutions was tested at room temperature, in a 12h period. In the work, in all cases, only one main degradation product, salicylic acid, was found. What is more, the work revealed that the degradation of aspirin in the tested organic solutions yields apparent second-order kinetics. The study also demonstrated that acetonitrile and 1,4-dioxane turned out to be the most stable solvents, and an above 80% of initial concentration of acetylsalicylic acid was found in this case. Furthermore, the most popular analytical solvents, methanol and ethanol, were found to be very unstable media. Herein, below 40% of initial concentration of acetylsalicylic acid was seen after 12h. The obtained results were also compared with the degradation of acetylsalicylic acid in a water solution. In this situation, only about 25% of the analyzed compound was resolved to salicylic acid in the same time frame.
ISSN:2300-6676