Analytic Model Predictive Control of Uncertain Nonlinear Systems: A Fuzzy Adaptive Approach

A fuzzy adaptive analytic model predictive control method is proposed in this paper for a class of uncertain nonlinear systems. Specifically, invoking the standard results from the Moore-Penrose inverse of matrix, the unmatched problem which exists commonly in input and output dimensions of systems...

Full description

Bibliographic Details
Main Authors: Xiuyan Peng, Shuli Jia, Xingmei Wang
Format: Article
Language:English
Published: Hindawi Limited 2015-01-01
Series:Mathematical Problems in Engineering
Online Access:http://dx.doi.org/10.1155/2015/760490
Description
Summary:A fuzzy adaptive analytic model predictive control method is proposed in this paper for a class of uncertain nonlinear systems. Specifically, invoking the standard results from the Moore-Penrose inverse of matrix, the unmatched problem which exists commonly in input and output dimensions of systems is firstly solved. Then, recurring to analytic model predictive control law, combined with fuzzy adaptive approach, the fuzzy adaptive predictive controller synthesis for the underlying systems is developed. To further reduce the impact of fuzzy approximation error on the system and improve the robustness of the system, the robust compensation term is introduced. It is shown that by applying the fuzzy adaptive analytic model predictive controller the rudder roll stabilization system is ultimately uniformly bounded stabilized in the H-infinity sense. Finally, simulation results demonstrate the effectiveness of the proposed method.
ISSN:1024-123X
1563-5147