Semi-Empirical Force-Field Model for the Ti1−xAlxN  (0 ≤ x ≤ 1) System

We present a modified embedded atom method (MEAM) semi-empirical force-field model for the Ti1−xAlxN (0 ≤ x ≤ 1) alloy system. The MEAM parameters, determined via an adaptive simulated-annealing (ASA) minimization scheme, optimize the model’s predictions with respec...

Full description

Bibliographic Details
Main Authors: G. A. Almyras, D. G. Sangiovanni, K. Sarakinos
Format: Article
Language:English
Published: MDPI AG 2019-01-01
Series:Materials
Subjects:
Online Access:http://www.mdpi.com/1996-1944/12/2/215
id doaj-991274b73e9c46d6b1fbfff781829b61
record_format Article
spelling doaj-991274b73e9c46d6b1fbfff781829b612020-11-24T21:44:29ZengMDPI AGMaterials1996-19442019-01-0112221510.3390/ma12020215ma12020215Semi-Empirical Force-Field Model for the Ti1−xAlxN  (0 ≤ x ≤ 1) SystemG. A. Almyras0D. G. Sangiovanni1K. Sarakinos2Nanoscale Engineering Division, Department of Physics, Chemistry, and Biology, Linköping University, SE 581 83 Linköping, SwedenAtomistic Modelling and Simulation, ICAMS, Ruhr-Universität Bochum, D-44801 Bochum, GermanyNanoscale Engineering Division, Department of Physics, Chemistry, and Biology, Linköping University, SE 581 83 Linköping, SwedenWe present a modified embedded atom method (MEAM) semi-empirical force-field model for the Ti1−xAlxN (0 ≤ x ≤ 1) alloy system. The MEAM parameters, determined via an adaptive simulated-annealing (ASA) minimization scheme, optimize the model’s predictions with respect to 0 K equilibrium volumes, elastic constants, cohesive energies, enthalpies of mixing, and point-defect formation energies, for a set of ≈40 elemental, binary, and ternary Ti-Al-N structures and configurations. Subsequently, the reliability of the model is thoroughly verified against known finite-temperature thermodynamic and kinetic properties of key binary Ti-N and Al-N phases, as well as properties of Ti1−xAlxN (0 < x < 1) alloys. The successful outcome of the validation underscores the transferability of our model, opening the way for large-scale molecular dynamics simulations of, e.g., phase evolution, interfacial processes, and mechanical response in Ti-Al-N-based alloys, superlattices, and nanostructures.http://www.mdpi.com/1996-1944/12/2/215titanium-aluminum nitrideTi-Al-NMD simulations, molecular dynamicsinteratomic potentialMEAMforce-field modelspinodal decompositionphase stability
collection DOAJ
language English
format Article
sources DOAJ
author G. A. Almyras
D. G. Sangiovanni
K. Sarakinos
spellingShingle G. A. Almyras
D. G. Sangiovanni
K. Sarakinos
Semi-Empirical Force-Field Model for the Ti1−xAlxN  (0 ≤ x ≤ 1) System
Materials
titanium-aluminum nitride
Ti-Al-N
MD simulations, molecular dynamics
interatomic potential
MEAM
force-field model
spinodal decomposition
phase stability
author_facet G. A. Almyras
D. G. Sangiovanni
K. Sarakinos
author_sort G. A. Almyras
title Semi-Empirical Force-Field Model for the Ti1−xAlxN  (0 ≤ x ≤ 1) System
title_short Semi-Empirical Force-Field Model for the Ti1−xAlxN  (0 ≤ x ≤ 1) System
title_full Semi-Empirical Force-Field Model for the Ti1−xAlxN  (0 ≤ x ≤ 1) System
title_fullStr Semi-Empirical Force-Field Model for the Ti1−xAlxN  (0 ≤ x ≤ 1) System
title_full_unstemmed Semi-Empirical Force-Field Model for the Ti1−xAlxN  (0 ≤ x ≤ 1) System
title_sort semi-empirical force-field model for the ti1−xalxn  (0 ≤ x ≤ 1) system
publisher MDPI AG
series Materials
issn 1996-1944
publishDate 2019-01-01
description We present a modified embedded atom method (MEAM) semi-empirical force-field model for the Ti1−xAlxN (0 ≤ x ≤ 1) alloy system. The MEAM parameters, determined via an adaptive simulated-annealing (ASA) minimization scheme, optimize the model’s predictions with respect to 0 K equilibrium volumes, elastic constants, cohesive energies, enthalpies of mixing, and point-defect formation energies, for a set of ≈40 elemental, binary, and ternary Ti-Al-N structures and configurations. Subsequently, the reliability of the model is thoroughly verified against known finite-temperature thermodynamic and kinetic properties of key binary Ti-N and Al-N phases, as well as properties of Ti1−xAlxN (0 < x < 1) alloys. The successful outcome of the validation underscores the transferability of our model, opening the way for large-scale molecular dynamics simulations of, e.g., phase evolution, interfacial processes, and mechanical response in Ti-Al-N-based alloys, superlattices, and nanostructures.
topic titanium-aluminum nitride
Ti-Al-N
MD simulations, molecular dynamics
interatomic potential
MEAM
force-field model
spinodal decomposition
phase stability
url http://www.mdpi.com/1996-1944/12/2/215
work_keys_str_mv AT gaalmyras semiempiricalforcefieldmodelfortheti1xalxn0x1system
AT dgsangiovanni semiempiricalforcefieldmodelfortheti1xalxn0x1system
AT ksarakinos semiempiricalforcefieldmodelfortheti1xalxn0x1system
_version_ 1725909864484438016