Parameterization of oceanic whitecap fraction based on satellite observations

In this study, the utility of satellite-based whitecap fraction (<i>W</i>) data for the prediction of sea spray aerosol (SSA) emission rates is explored. More specifically, the study aims at evaluating how an account for natural variability of whitecaps in the <i>W</i> par...

Full description

Bibliographic Details
Main Authors: M. F. M. A. Albert, M. D. Anguelova, A. M. M. Manders, M. Schaap, G. de Leeuw
Format: Article
Language:English
Published: Copernicus Publications 2016-11-01
Series:Atmospheric Chemistry and Physics
Online Access:https://www.atmos-chem-phys.net/16/13725/2016/acp-16-13725-2016.pdf
id doaj-990c83ff7eeb4c228c05ee30206cf5b4
record_format Article
spelling doaj-990c83ff7eeb4c228c05ee30206cf5b42020-11-24T23:14:26ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242016-11-0116137251375110.5194/acp-16-13725-2016Parameterization of oceanic whitecap fraction based on satellite observationsM. F. M. A. Albert0M. D. Anguelova1A. M. M. Manders2M. Schaap3G. de Leeuw4G. de Leeuw5G. de Leeuw6TNO, P.O. Box 80015, 3508 TA Utrecht, the NetherlandsRemote Sensing Division, Naval Research Laboratory, Washington, DC 20375, USATNO, P.O. Box 80015, 3508 TA Utrecht, the NetherlandsTNO, P.O. Box 80015, 3508 TA Utrecht, the NetherlandsTNO, P.O. Box 80015, 3508 TA Utrecht, the NetherlandsClimate Research Unit, Finnish Meteorological Institute, Helsinki, FinlandDepartment of Physics, University of Helsinki, Helsinki, FinlandIn this study, the utility of satellite-based whitecap fraction (<i>W</i>) data for the prediction of sea spray aerosol (SSA) emission rates is explored. More specifically, the study aims at evaluating how an account for natural variability of whitecaps in the <i>W</i> parameterization would affect SSA mass flux predictions when using a sea spray source function (SSSF) based on the discrete whitecap method. The starting point is a data set containing <i>W</i> data for 2006 together with matching wind speed <i>U</i><sub>10</sub> and sea surface temperature (SST) <i>T</i>. Whitecap fraction <i>W</i> was estimated from observations of the ocean surface brightness temperature <i>T</i><sub>B</sub> by satellite-borne radiometers at two frequencies (10 and 37 GHz). A global-scale assessment of the data set yielded approximately quadratic correlation between <i>W</i> and <i>U</i><sub>10</sub>. A new global <i>W</i>(<i>U</i><sub>10</sub>) parameterization was developed and used to evaluate an intrinsic correlation between <i>W</i> and <i>U</i><sub>10</sub> that could have been introduced while estimating <i>W</i> from <i>T</i><sub>B</sub>. A regional-scale analysis over different seasons indicated significant differences of the coefficients of regional <i>W</i>(<i>U</i><sub>10</sub>) relationships. The effect of SST on <i>W</i> is explicitly accounted for in a new <i>W</i>(<i>U</i><sub>10</sub>, <i>T</i>) parameterization. The analysis of <i>W</i> values obtained with the new <i>W</i>(<i>U</i><sub>10</sub>) and <i>W</i>(<i>U</i><sub>10</sub>, <i>T</i>) parameterizations indicates that the influence of secondary factors on <i>W</i> is for the largest part embedded in the exponent of the wind speed dependence. In addition, the <i>W</i>(<i>U</i><sub>10</sub>, <i>T</i>) parameterization is able to partially model the spread (or variability) of the satellite-based <i>W</i> data. The satellite-based parameterization <i>W</i>(<i>U</i><sub>10</sub>, <i>T</i>) was applied in an SSSF to estimate the global SSA emission rate. The thus obtained SSA production rate for 2006 of 4.4  ×  10<sup>12</sup> kg year<sup>−1</sup> is within previously reported estimates, however with distinctly different spatial distribution.https://www.atmos-chem-phys.net/16/13725/2016/acp-16-13725-2016.pdf
collection DOAJ
language English
format Article
sources DOAJ
author M. F. M. A. Albert
M. D. Anguelova
A. M. M. Manders
M. Schaap
G. de Leeuw
G. de Leeuw
G. de Leeuw
spellingShingle M. F. M. A. Albert
M. D. Anguelova
A. M. M. Manders
M. Schaap
G. de Leeuw
G. de Leeuw
G. de Leeuw
Parameterization of oceanic whitecap fraction based on satellite observations
Atmospheric Chemistry and Physics
author_facet M. F. M. A. Albert
M. D. Anguelova
A. M. M. Manders
M. Schaap
G. de Leeuw
G. de Leeuw
G. de Leeuw
author_sort M. F. M. A. Albert
title Parameterization of oceanic whitecap fraction based on satellite observations
title_short Parameterization of oceanic whitecap fraction based on satellite observations
title_full Parameterization of oceanic whitecap fraction based on satellite observations
title_fullStr Parameterization of oceanic whitecap fraction based on satellite observations
title_full_unstemmed Parameterization of oceanic whitecap fraction based on satellite observations
title_sort parameterization of oceanic whitecap fraction based on satellite observations
publisher Copernicus Publications
series Atmospheric Chemistry and Physics
issn 1680-7316
1680-7324
publishDate 2016-11-01
description In this study, the utility of satellite-based whitecap fraction (<i>W</i>) data for the prediction of sea spray aerosol (SSA) emission rates is explored. More specifically, the study aims at evaluating how an account for natural variability of whitecaps in the <i>W</i> parameterization would affect SSA mass flux predictions when using a sea spray source function (SSSF) based on the discrete whitecap method. The starting point is a data set containing <i>W</i> data for 2006 together with matching wind speed <i>U</i><sub>10</sub> and sea surface temperature (SST) <i>T</i>. Whitecap fraction <i>W</i> was estimated from observations of the ocean surface brightness temperature <i>T</i><sub>B</sub> by satellite-borne radiometers at two frequencies (10 and 37 GHz). A global-scale assessment of the data set yielded approximately quadratic correlation between <i>W</i> and <i>U</i><sub>10</sub>. A new global <i>W</i>(<i>U</i><sub>10</sub>) parameterization was developed and used to evaluate an intrinsic correlation between <i>W</i> and <i>U</i><sub>10</sub> that could have been introduced while estimating <i>W</i> from <i>T</i><sub>B</sub>. A regional-scale analysis over different seasons indicated significant differences of the coefficients of regional <i>W</i>(<i>U</i><sub>10</sub>) relationships. The effect of SST on <i>W</i> is explicitly accounted for in a new <i>W</i>(<i>U</i><sub>10</sub>, <i>T</i>) parameterization. The analysis of <i>W</i> values obtained with the new <i>W</i>(<i>U</i><sub>10</sub>) and <i>W</i>(<i>U</i><sub>10</sub>, <i>T</i>) parameterizations indicates that the influence of secondary factors on <i>W</i> is for the largest part embedded in the exponent of the wind speed dependence. In addition, the <i>W</i>(<i>U</i><sub>10</sub>, <i>T</i>) parameterization is able to partially model the spread (or variability) of the satellite-based <i>W</i> data. The satellite-based parameterization <i>W</i>(<i>U</i><sub>10</sub>, <i>T</i>) was applied in an SSSF to estimate the global SSA emission rate. The thus obtained SSA production rate for 2006 of 4.4  ×  10<sup>12</sup> kg year<sup>−1</sup> is within previously reported estimates, however with distinctly different spatial distribution.
url https://www.atmos-chem-phys.net/16/13725/2016/acp-16-13725-2016.pdf
work_keys_str_mv AT mfmaalbert parameterizationofoceanicwhitecapfractionbasedonsatelliteobservations
AT mdanguelova parameterizationofoceanicwhitecapfractionbasedonsatelliteobservations
AT ammmanders parameterizationofoceanicwhitecapfractionbasedonsatelliteobservations
AT mschaap parameterizationofoceanicwhitecapfractionbasedonsatelliteobservations
AT gdeleeuw parameterizationofoceanicwhitecapfractionbasedonsatelliteobservations
AT gdeleeuw parameterizationofoceanicwhitecapfractionbasedonsatelliteobservations
AT gdeleeuw parameterizationofoceanicwhitecapfractionbasedonsatelliteobservations
_version_ 1725594508281774080