Structural Trends and Solid-Solutions Based on the Crystal Chemistry of Two Hausmannite (Mn<sub>3</sub>O<sub>4</sub>) Samples from the Kalahari Manganese Field
The crystal chemistry of two hausmannite samples from the Kalahari manganese field (KMF), South Africa, was studied using electron-probe microanalysis (EPMA), single-crystal X-ray diffraction (SCXRD) for sample-a, and high-resolution powder X-ray diffraction (HRPXRD) for sample-b, and a synthetic Mn...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2019-06-01
|
Series: | Minerals |
Subjects: | |
Online Access: | https://www.mdpi.com/2075-163X/9/6/343 |
id |
doaj-99044473c2fb49adaa2e46b5511ef509 |
---|---|
record_format |
Article |
spelling |
doaj-99044473c2fb49adaa2e46b5511ef5092020-11-24T21:20:19ZengMDPI AGMinerals2075-163X2019-06-019634310.3390/min9060343min9060343Structural Trends and Solid-Solutions Based on the Crystal Chemistry of Two Hausmannite (Mn<sub>3</sub>O<sub>4</sub>) Samples from the Kalahari Manganese FieldSytle M. Antao0Laura A. Cruickshank1Kaveer S. Hazrah2Department of Geoscience, University of Calgary, Calgary, AB T2N 1N4, CanadaDepartment of Geoscience, University of Calgary, Calgary, AB T2N 1N4, CanadaDepartment of Geoscience, University of Calgary, Calgary, AB T2N 1N4, CanadaThe crystal chemistry of two hausmannite samples from the Kalahari manganese field (KMF), South Africa, was studied using electron-probe microanalysis (EPMA), single-crystal X-ray diffraction (SCXRD) for sample-a, and high-resolution powder X-ray diffraction (HRPXRD) for sample-b, and a synthetic Mn<sub>3</sub>O<sub>4</sub> (97% purity) sample-c as a reference point. Hausmannite samples from the KMF were reported to be either magnetic or non-magnetic with a general formula AB<sub>2</sub>O<sub>4</sub>. The EPMA composition for sample-a is [Mn<sup>2+</sup><sub>0.88</sub>Mg<sup>2+</sup><sub>0.11</sub>Fe<sup>2+</sup><sub>0.01</sub>]<sub>Σ</sub><sub>1.00</sub>Mn<sup>3+</sup><sub>2.00</sub>O<sub>4</sub> compared to Mn<sup>2+</sup>Mn<sup>3+</sup><sub>2</sub>O<sub>4</sub> obtained by refinement. The single-crystal structure refinement in the tetragonal space group <i>I</i>4<sub>1</sub>/<i>amd</i> gave R1 = 0.0215 for 669 independently observed reflections. The unit-cell parameters are <i>a</i> = <i>b</i> = 5.7556(6), <i>c</i> = 9.443(1) Å, and <i>V</i> = 312.80(7) Å<sup>3</sup>. The Jahn−Teller elongated Mn<sup>3+</sup>O<sub>6</sub> octahedron of the <i>M</i> site consists of <i>M</i>−O × 4 = 1.9272(5), <i>M</i>−O × 2 = 2.2843(7), and an average <<i>M</i>−O>[6] = 2.0462(2) Å, whereas the Mn<sup>2+</sup>O<sub>4</sub> tetrahedron of the <i>T</i> site has <i>T</i>−O × 4 = 2.0367(8) Å. The site occupancy factors (<i>sof</i>) are <i>M</i>(<i>sof</i>) = 1.0 Mn (fixed, thereafter) and <i>T</i>(<i>sof</i>) = 1.0008(2) Mn. The EPMA composition for sample-b is [Mn<sub>0.99</sub>Mg<sub>0.01</sub>](Mn<sub>1.52</sub>Fe<sub>0.48</sub>)O<sub>4</sub>. The Rietveld refinement gave <i>R (F</i><sup>2</sup>) = 0.0368. The unit-cell parameters are <i>a</i> = <i>b</i> = 5.78144(1), <i>c</i> = 9.38346(3) Å, and <i>V</i> = 313.642(1) Å<sup>3</sup>. The octahedron has <i>M</i>−O × 4 = 1.9364(3), <i>M</i>−O × 2 = 2.2595(6), and average <<i>M</i>−O>[6] = 2.0441(2) Å, whereas <i>T</i>−O × 4 = 2.0438(5) Å. The refinement gave <i>T</i>(<i>sof</i>) = 0.820(9) Mn<sup>2+</sup> + 0.180(9) Fe<sup>2+</sup> and <i>M</i>(<i>sof</i>) = 0.940(5) Mn<sup>3+</sup> + 0.060(5) Fe<sup>3+</sup>. Samples-a and -b are normal spinels with different amounts of substitutions at the <i>M</i> and <i>T</i> sites. The Jahn−Teller elongation, Δ(<i>M</i>−O), is smaller in sample-b because atom substitutions relieve strain compared to pure Mn<sub>3</sub>O<sub>4</sub>.https://www.mdpi.com/2075-163X/9/6/343hausmannitechemical analysiscrystal structurestructural variations |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Sytle M. Antao Laura A. Cruickshank Kaveer S. Hazrah |
spellingShingle |
Sytle M. Antao Laura A. Cruickshank Kaveer S. Hazrah Structural Trends and Solid-Solutions Based on the Crystal Chemistry of Two Hausmannite (Mn<sub>3</sub>O<sub>4</sub>) Samples from the Kalahari Manganese Field Minerals hausmannite chemical analysis crystal structure structural variations |
author_facet |
Sytle M. Antao Laura A. Cruickshank Kaveer S. Hazrah |
author_sort |
Sytle M. Antao |
title |
Structural Trends and Solid-Solutions Based on the Crystal Chemistry of Two Hausmannite (Mn<sub>3</sub>O<sub>4</sub>) Samples from the Kalahari Manganese Field |
title_short |
Structural Trends and Solid-Solutions Based on the Crystal Chemistry of Two Hausmannite (Mn<sub>3</sub>O<sub>4</sub>) Samples from the Kalahari Manganese Field |
title_full |
Structural Trends and Solid-Solutions Based on the Crystal Chemistry of Two Hausmannite (Mn<sub>3</sub>O<sub>4</sub>) Samples from the Kalahari Manganese Field |
title_fullStr |
Structural Trends and Solid-Solutions Based on the Crystal Chemistry of Two Hausmannite (Mn<sub>3</sub>O<sub>4</sub>) Samples from the Kalahari Manganese Field |
title_full_unstemmed |
Structural Trends and Solid-Solutions Based on the Crystal Chemistry of Two Hausmannite (Mn<sub>3</sub>O<sub>4</sub>) Samples from the Kalahari Manganese Field |
title_sort |
structural trends and solid-solutions based on the crystal chemistry of two hausmannite (mn<sub>3</sub>o<sub>4</sub>) samples from the kalahari manganese field |
publisher |
MDPI AG |
series |
Minerals |
issn |
2075-163X |
publishDate |
2019-06-01 |
description |
The crystal chemistry of two hausmannite samples from the Kalahari manganese field (KMF), South Africa, was studied using electron-probe microanalysis (EPMA), single-crystal X-ray diffraction (SCXRD) for sample-a, and high-resolution powder X-ray diffraction (HRPXRD) for sample-b, and a synthetic Mn<sub>3</sub>O<sub>4</sub> (97% purity) sample-c as a reference point. Hausmannite samples from the KMF were reported to be either magnetic or non-magnetic with a general formula AB<sub>2</sub>O<sub>4</sub>. The EPMA composition for sample-a is [Mn<sup>2+</sup><sub>0.88</sub>Mg<sup>2+</sup><sub>0.11</sub>Fe<sup>2+</sup><sub>0.01</sub>]<sub>Σ</sub><sub>1.00</sub>Mn<sup>3+</sup><sub>2.00</sub>O<sub>4</sub> compared to Mn<sup>2+</sup>Mn<sup>3+</sup><sub>2</sub>O<sub>4</sub> obtained by refinement. The single-crystal structure refinement in the tetragonal space group <i>I</i>4<sub>1</sub>/<i>amd</i> gave R1 = 0.0215 for 669 independently observed reflections. The unit-cell parameters are <i>a</i> = <i>b</i> = 5.7556(6), <i>c</i> = 9.443(1) Å, and <i>V</i> = 312.80(7) Å<sup>3</sup>. The Jahn−Teller elongated Mn<sup>3+</sup>O<sub>6</sub> octahedron of the <i>M</i> site consists of <i>M</i>−O × 4 = 1.9272(5), <i>M</i>−O × 2 = 2.2843(7), and an average <<i>M</i>−O>[6] = 2.0462(2) Å, whereas the Mn<sup>2+</sup>O<sub>4</sub> tetrahedron of the <i>T</i> site has <i>T</i>−O × 4 = 2.0367(8) Å. The site occupancy factors (<i>sof</i>) are <i>M</i>(<i>sof</i>) = 1.0 Mn (fixed, thereafter) and <i>T</i>(<i>sof</i>) = 1.0008(2) Mn. The EPMA composition for sample-b is [Mn<sub>0.99</sub>Mg<sub>0.01</sub>](Mn<sub>1.52</sub>Fe<sub>0.48</sub>)O<sub>4</sub>. The Rietveld refinement gave <i>R (F</i><sup>2</sup>) = 0.0368. The unit-cell parameters are <i>a</i> = <i>b</i> = 5.78144(1), <i>c</i> = 9.38346(3) Å, and <i>V</i> = 313.642(1) Å<sup>3</sup>. The octahedron has <i>M</i>−O × 4 = 1.9364(3), <i>M</i>−O × 2 = 2.2595(6), and average <<i>M</i>−O>[6] = 2.0441(2) Å, whereas <i>T</i>−O × 4 = 2.0438(5) Å. The refinement gave <i>T</i>(<i>sof</i>) = 0.820(9) Mn<sup>2+</sup> + 0.180(9) Fe<sup>2+</sup> and <i>M</i>(<i>sof</i>) = 0.940(5) Mn<sup>3+</sup> + 0.060(5) Fe<sup>3+</sup>. Samples-a and -b are normal spinels with different amounts of substitutions at the <i>M</i> and <i>T</i> sites. The Jahn−Teller elongation, Δ(<i>M</i>−O), is smaller in sample-b because atom substitutions relieve strain compared to pure Mn<sub>3</sub>O<sub>4</sub>. |
topic |
hausmannite chemical analysis crystal structure structural variations |
url |
https://www.mdpi.com/2075-163X/9/6/343 |
work_keys_str_mv |
AT sytlemantao structuraltrendsandsolidsolutionsbasedonthecrystalchemistryoftwohausmannitemnsub3subosub4subsamplesfromthekalaharimanganesefield AT lauraacruickshank structuraltrendsandsolidsolutionsbasedonthecrystalchemistryoftwohausmannitemnsub3subosub4subsamplesfromthekalaharimanganesefield AT kaveershazrah structuraltrendsandsolidsolutionsbasedonthecrystalchemistryoftwohausmannitemnsub3subosub4subsamplesfromthekalaharimanganesefield |
_version_ |
1726002840187437056 |