Ginsenoside 20(S)-Rg3 Inhibits the Warburg Effect Via Modulating DNMT3A/ MiR-532-3p/HK2 Pathway in Ovarian Cancer Cells

Background/Aims: The Warburg effect is one of the main energy metabolism features supporting cancer cell growth. 20(S)-Rg3 exerts anti-tumor effect on ovarian cancer partly by inhibiting the Warburg effect. microRNAs are important regulators of the Warburg effect. However, the microRNA regulatory ne...

Full description

Bibliographic Details
Main Authors: Yuanyuan Zhou, Xia Zheng, Jiaojiao Lu, Wei Chen, Xu Li, Le Zhao
Format: Article
Language:English
Published: Cell Physiol Biochem Press GmbH & Co KG 2018-03-01
Series:Cellular Physiology and Biochemistry
Subjects:
Online Access:https://www.karger.com/Article/FullText/488273
id doaj-98e38c9476c54067bd54457948924a97
record_format Article
spelling doaj-98e38c9476c54067bd54457948924a972020-11-25T02:40:10ZengCell Physiol Biochem Press GmbH & Co KGCellular Physiology and Biochemistry1015-89871421-97782018-03-014562548255910.1159/000488273488273Ginsenoside 20(S)-Rg3 Inhibits the Warburg Effect Via Modulating DNMT3A/ MiR-532-3p/HK2 Pathway in Ovarian Cancer CellsYuanyuan ZhouXia ZhengJiaojiao LuWei ChenXu LiLe ZhaoBackground/Aims: The Warburg effect is one of the main energy metabolism features supporting cancer cell growth. 20(S)-Rg3 exerts anti-tumor effect on ovarian cancer partly by inhibiting the Warburg effect. microRNAs are important regulators of the Warburg effect. However, the microRNA regulatory network mediating the anti-Warburg effect of 20(S)-Rg3 was largely unknown. Methods: microRNA deep sequencing was performed to identify the 20(S)-Rg3-influenced microRNAs in SKOV3 ovarian cancer cells. miR-532-3p was overexpressed by mimic532-3p transfection in SKOV3 and A2780 cells or inhibited by inhibitor532-3p transfection in 20(S)-Rg3-treated cells to examine the changes in HK2 and PKM2 expression, glucose consumption, lactate production and cell growth. Dual-luciferase reporter assay was conducted to verify the direct binding of miR-532-3p to HK2. The methylation status in the promoter region of pre-miR-532-3p gene was examined by methylation-specific PCR. Expression changes of key molecules controlling DNA methylation including DNMT1, DNMT3A, DNMT3B, and TET1-3 were examined in 20(S)-Rg3-treated cells. DNMT3A was overexpressed in 20(S)-Rg3-treated cells to examine its influence on miR-532-3p level, HK2 and PKM2 expression, glucose consumption and lactate production. Results: Deep sequencing results showed that 11 microRNAs were increased and 9 microRNAs were decreased by 20(S)-Rg3 in SKOV3 cells, which were verified by qPCR. More than 2-fold increase of miR-532-3p was found in 20(S)-Rg3-treated SKOV3 cells. Forced expression of miR-532-3p reduced HK2 and PKM2 expression, glucose consumption and lactate production in SKOV3 and A2780 ovarian cancer cells. Inhibition of miR-532-3p antagonized the suppressive effect of 20(S)-Rg3 on HK2 and PKM2 expression, glucose consumption and lactate production in ovarian cancer cells. Dual-luciferase reporter assay showed that miR-532-3p directly suppressed HK2 rather than PKM2. miR-532-3p level was controlled by the methylation in the promoter region of its host gene. 20(S)-Rg3 inhibited DNMT3A expression while exerted insignificant effect on DNMT1, DNMT3B and TET1-3. 20(S)-Rg3 reversed DNMT3A-mediated methylation in the promoter of the host gene of miR-532-3p, and thus elevated miR-532-3p level followed by suppression of HK2 and PKM2 expression, glucose consumption and lactate production. Conclusions: 20(S)-Rg3 modulated microRNAs to exert the anti-tumor effect in ovarian cancer. 20(S)-Rg3 lessened the DNMT3A-mediated methylation and promoted the suppression of miR-532-3p on HK2 to antagonize the Warburg effect of ovarian cancer cells.https://www.karger.com/Article/FullText/488273GinsenosideOvarian cancerWarburg effectMicroRNA
collection DOAJ
language English
format Article
sources DOAJ
author Yuanyuan Zhou
Xia Zheng
Jiaojiao Lu
Wei Chen
Xu Li
Le Zhao
spellingShingle Yuanyuan Zhou
Xia Zheng
Jiaojiao Lu
Wei Chen
Xu Li
Le Zhao
Ginsenoside 20(S)-Rg3 Inhibits the Warburg Effect Via Modulating DNMT3A/ MiR-532-3p/HK2 Pathway in Ovarian Cancer Cells
Cellular Physiology and Biochemistry
Ginsenoside
Ovarian cancer
Warburg effect
MicroRNA
author_facet Yuanyuan Zhou
Xia Zheng
Jiaojiao Lu
Wei Chen
Xu Li
Le Zhao
author_sort Yuanyuan Zhou
title Ginsenoside 20(S)-Rg3 Inhibits the Warburg Effect Via Modulating DNMT3A/ MiR-532-3p/HK2 Pathway in Ovarian Cancer Cells
title_short Ginsenoside 20(S)-Rg3 Inhibits the Warburg Effect Via Modulating DNMT3A/ MiR-532-3p/HK2 Pathway in Ovarian Cancer Cells
title_full Ginsenoside 20(S)-Rg3 Inhibits the Warburg Effect Via Modulating DNMT3A/ MiR-532-3p/HK2 Pathway in Ovarian Cancer Cells
title_fullStr Ginsenoside 20(S)-Rg3 Inhibits the Warburg Effect Via Modulating DNMT3A/ MiR-532-3p/HK2 Pathway in Ovarian Cancer Cells
title_full_unstemmed Ginsenoside 20(S)-Rg3 Inhibits the Warburg Effect Via Modulating DNMT3A/ MiR-532-3p/HK2 Pathway in Ovarian Cancer Cells
title_sort ginsenoside 20(s)-rg3 inhibits the warburg effect via modulating dnmt3a/ mir-532-3p/hk2 pathway in ovarian cancer cells
publisher Cell Physiol Biochem Press GmbH & Co KG
series Cellular Physiology and Biochemistry
issn 1015-8987
1421-9778
publishDate 2018-03-01
description Background/Aims: The Warburg effect is one of the main energy metabolism features supporting cancer cell growth. 20(S)-Rg3 exerts anti-tumor effect on ovarian cancer partly by inhibiting the Warburg effect. microRNAs are important regulators of the Warburg effect. However, the microRNA regulatory network mediating the anti-Warburg effect of 20(S)-Rg3 was largely unknown. Methods: microRNA deep sequencing was performed to identify the 20(S)-Rg3-influenced microRNAs in SKOV3 ovarian cancer cells. miR-532-3p was overexpressed by mimic532-3p transfection in SKOV3 and A2780 cells or inhibited by inhibitor532-3p transfection in 20(S)-Rg3-treated cells to examine the changes in HK2 and PKM2 expression, glucose consumption, lactate production and cell growth. Dual-luciferase reporter assay was conducted to verify the direct binding of miR-532-3p to HK2. The methylation status in the promoter region of pre-miR-532-3p gene was examined by methylation-specific PCR. Expression changes of key molecules controlling DNA methylation including DNMT1, DNMT3A, DNMT3B, and TET1-3 were examined in 20(S)-Rg3-treated cells. DNMT3A was overexpressed in 20(S)-Rg3-treated cells to examine its influence on miR-532-3p level, HK2 and PKM2 expression, glucose consumption and lactate production. Results: Deep sequencing results showed that 11 microRNAs were increased and 9 microRNAs were decreased by 20(S)-Rg3 in SKOV3 cells, which were verified by qPCR. More than 2-fold increase of miR-532-3p was found in 20(S)-Rg3-treated SKOV3 cells. Forced expression of miR-532-3p reduced HK2 and PKM2 expression, glucose consumption and lactate production in SKOV3 and A2780 ovarian cancer cells. Inhibition of miR-532-3p antagonized the suppressive effect of 20(S)-Rg3 on HK2 and PKM2 expression, glucose consumption and lactate production in ovarian cancer cells. Dual-luciferase reporter assay showed that miR-532-3p directly suppressed HK2 rather than PKM2. miR-532-3p level was controlled by the methylation in the promoter region of its host gene. 20(S)-Rg3 inhibited DNMT3A expression while exerted insignificant effect on DNMT1, DNMT3B and TET1-3. 20(S)-Rg3 reversed DNMT3A-mediated methylation in the promoter of the host gene of miR-532-3p, and thus elevated miR-532-3p level followed by suppression of HK2 and PKM2 expression, glucose consumption and lactate production. Conclusions: 20(S)-Rg3 modulated microRNAs to exert the anti-tumor effect in ovarian cancer. 20(S)-Rg3 lessened the DNMT3A-mediated methylation and promoted the suppression of miR-532-3p on HK2 to antagonize the Warburg effect of ovarian cancer cells.
topic Ginsenoside
Ovarian cancer
Warburg effect
MicroRNA
url https://www.karger.com/Article/FullText/488273
work_keys_str_mv AT yuanyuanzhou ginsenoside20srg3inhibitsthewarburgeffectviamodulatingdnmt3amir5323phk2pathwayinovariancancercells
AT xiazheng ginsenoside20srg3inhibitsthewarburgeffectviamodulatingdnmt3amir5323phk2pathwayinovariancancercells
AT jiaojiaolu ginsenoside20srg3inhibitsthewarburgeffectviamodulatingdnmt3amir5323phk2pathwayinovariancancercells
AT weichen ginsenoside20srg3inhibitsthewarburgeffectviamodulatingdnmt3amir5323phk2pathwayinovariancancercells
AT xuli ginsenoside20srg3inhibitsthewarburgeffectviamodulatingdnmt3amir5323phk2pathwayinovariancancercells
AT lezhao ginsenoside20srg3inhibitsthewarburgeffectviamodulatingdnmt3amir5323phk2pathwayinovariancancercells
_version_ 1724782664093794304