Epigenetic Regulation in Mesenchymal Stem Cell Aging and Differentiation and Osteoporosis

Mesenchymal stem cells (MSCs) are a reliable source for cell-based regenerative medicine owing to their multipotency and biological functions. However, aging-induced systemic homeostasis disorders in vivo and cell culture passaging in vitro induce a functional decline of MSCs, switching MSCs to a se...

Full description

Bibliographic Details
Main Authors: Ruoxi Wang, Yu Wang, Lisha Zhu, Yan Liu, Weiran Li
Format: Article
Language:English
Published: Hindawi Limited 2020-01-01
Series:Stem Cells International
Online Access:http://dx.doi.org/10.1155/2020/8836258
Description
Summary:Mesenchymal stem cells (MSCs) are a reliable source for cell-based regenerative medicine owing to their multipotency and biological functions. However, aging-induced systemic homeostasis disorders in vivo and cell culture passaging in vitro induce a functional decline of MSCs, switching MSCs to a senescent status with impaired self-renewal capacity and biased differentiation tendency. MSC functional decline accounts for the pathogenesis of many diseases and, more importantly, limits the large-scale applications of MSCs in regenerative medicine. Growing evidence implies that epigenetic mechanisms are a critical regulator of the differentiation programs for cell fate and are subject to changes during aging. Thus, we here review epigenetic dysregulations that contribute to MSC aging and osteoporosis. Comprehending detailed epigenetic mechanisms could provide us with a novel horizon for dissecting MSC-related pathogenesis and further optimizing MSC-mediated regenerative therapies.
ISSN:1687-966X
1687-9678