Ionic Liquid as Dispersing Agent of LDH-Carbon Nanotubes into a Biodegradable Vinyl Alcohol Polymer

A Zn/Al layered double hydroxides (LDHs) hosting carbon nanotubes (80% of CNTs) was synthesized and dispersed into a commercial biodegradable highly amorphous vinyl alcohol polymer at different loading (i.e., 1; 3; 5; 10 wt %). In order to improve the degree of dispersion of the filler into the poly...

Full description

Bibliographic Details
Main Authors: Valeria Bugatti, Gianluca Viscusi, Antonio Di Bartolomeo, Laura Iemmo, Daniela Clotilde Zampino, Vittoria Vittoria, Giuliana Gorrasi
Format: Article
Language:English
Published: MDPI AG 2020-02-01
Series:Polymers
Subjects:
Online Access:https://www.mdpi.com/2073-4360/12/2/495
Description
Summary:A Zn/Al layered double hydroxides (LDHs) hosting carbon nanotubes (80% of CNTs) was synthesized and dispersed into a commercial biodegradable highly amorphous vinyl alcohol polymer at different loading (i.e., 1; 3; 5; 10 wt %). In order to improve the degree of dispersion of the filler into the polymer matrix, an ionic liquid (IL) based on 1-hexadecyl-3-methylimidazolium dimethyl-5-sodiosulfoisophthalate was added to the composites’ mixtures. Structural characterization of filler and polymeric composites was carried out. The analysis of thermal, mechanical and electrical properties of the composites, resulted improved compared to the unfilled material, allowed to hypothesize a good dispersion of the LDH-CNTs lamellar filler into the polymer matrix-assisted by the ionic liquid. This was demonstrated comparing electrical conductivity of composite at 5% of LDH-CNTs in the presence and in the absence of IL. The experimental results showed that the electrical conductivity of the sample with IL is four orders of magnitude higher than the one without IL. Furthermore, the percolation threshold of the whole system resulted very low—0.26% of LDH-CNTs loading, which is 0.21% of CNTs.
ISSN:2073-4360