Characterization of aerosol hygroscopicity using Raman lidar measurements at the EARLINET station of Payerne

<p>This study focuses on the analysis of aerosol hygroscopicity using remote sensing techniques. Continuous observations of aerosol backscatter coefficient (<span class="inline-formula"><i>β</i><sup>aer</sup></span>), temperature (<span class=&q...

Full description

Bibliographic Details
Main Authors: F. Navas-Guzmán, G. Martucci, M. Collaud Coen, M. J. Granados-Muñoz, M. Hervo, M. Sicard, A. Haefele
Format: Article
Language:English
Published: Copernicus Publications 2019-09-01
Series:Atmospheric Chemistry and Physics
Online Access:https://www.atmos-chem-phys.net/19/11651/2019/acp-19-11651-2019.pdf
id doaj-98d028fdc3074fa3b749e650af7270dd
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author F. Navas-Guzmán
G. Martucci
M. Collaud Coen
M. J. Granados-Muñoz
M. Hervo
M. Sicard
M. Sicard
A. Haefele
A. Haefele
spellingShingle F. Navas-Guzmán
G. Martucci
M. Collaud Coen
M. J. Granados-Muñoz
M. Hervo
M. Sicard
M. Sicard
A. Haefele
A. Haefele
Characterization of aerosol hygroscopicity using Raman lidar measurements at the EARLINET station of Payerne
Atmospheric Chemistry and Physics
author_facet F. Navas-Guzmán
G. Martucci
M. Collaud Coen
M. J. Granados-Muñoz
M. Hervo
M. Sicard
M. Sicard
A. Haefele
A. Haefele
author_sort F. Navas-Guzmán
title Characterization of aerosol hygroscopicity using Raman lidar measurements at the EARLINET station of Payerne
title_short Characterization of aerosol hygroscopicity using Raman lidar measurements at the EARLINET station of Payerne
title_full Characterization of aerosol hygroscopicity using Raman lidar measurements at the EARLINET station of Payerne
title_fullStr Characterization of aerosol hygroscopicity using Raman lidar measurements at the EARLINET station of Payerne
title_full_unstemmed Characterization of aerosol hygroscopicity using Raman lidar measurements at the EARLINET station of Payerne
title_sort characterization of aerosol hygroscopicity using raman lidar measurements at the earlinet station of payerne
publisher Copernicus Publications
series Atmospheric Chemistry and Physics
issn 1680-7316
1680-7324
publishDate 2019-09-01
description <p>This study focuses on the analysis of aerosol hygroscopicity using remote sensing techniques. Continuous observations of aerosol backscatter coefficient (<span class="inline-formula"><i>β</i><sup>aer</sup></span>), temperature (<span class="inline-formula"><i>T</i></span>) and water vapor mixing ratio (<span class="inline-formula"><i>r</i></span>) have been performed by means of a Raman lidar system at the aerological station of MeteoSwiss at Payerne (Switzerland) since 2008. These measurements allow us to monitor in a continuous way any change in aerosol properties as a function of the relative humidity (RH). These changes can be observed either in time at a constant altitude or in altitude at a constant time. The accuracy and precision of RH measurements from the lidar have been evaluated using the radiosonde (RS) technique as a reference. A total of 172 RS profiles were used in this intercomparison, which revealed a bias smaller than 4&thinsp;%&thinsp;RH and a standard deviation smaller than 10&thinsp;%&thinsp;RH between both techniques in the whole (in lower) troposphere at nighttime (at daytime), indicating the good performance of the lidar for characterizing RH. A methodology to identify situations favorable to studying aerosol hygroscopicity has been established, and the aerosol hygroscopicity has been characterized by means of the backscatter enhancement factor (<span class="inline-formula"><i>f</i><sub><i>β</i></sub></span>). Two case studies, corresponding to different types of aerosol, are used to illustrate the potential of this methodology.</p> <p>The first case corresponds to a mixture of rural aerosol and smoke particles (smoke mixture), which showed a higher hygroscopicity (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M5" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi>f</mi><mi mathvariant="italic">β</mi><mn mathvariant="normal">355</mn></msubsup><mo>=</mo><mn mathvariant="normal">2.8</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="49pt" height="18pt" class="svg-formula" dspmath="mathimg" md5hash="008c8c56d3437edf710ca649089133e5"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-11651-2019-ie00001.svg" width="49pt" height="18pt" src="acp-19-11651-2019-ie00001.png"/></svg:svg></span></span> and <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M6" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi>f</mi><mi mathvariant="italic">β</mi><mn mathvariant="normal">1064</mn></msubsup><mo>=</mo><mn mathvariant="normal">1.8</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="53pt" height="18pt" class="svg-formula" dspmath="mathimg" md5hash="69cdb07d75295f6b4f0ed35e3132ccbf"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-11651-2019-ie00002.svg" width="53pt" height="18pt" src="acp-19-11651-2019-ie00002.png"/></svg:svg></span></span> in the RH range 73&thinsp;%–97&thinsp;%) than the second case, in which mineral dust was present (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M7" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi>f</mi><mi mathvariant="italic">β</mi><mn mathvariant="normal">355</mn></msubsup><mo>=</mo><mn mathvariant="normal">1.2</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="49pt" height="18pt" class="svg-formula" dspmath="mathimg" md5hash="59b1adb84690727f0d4b37ad02460b89"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-11651-2019-ie00003.svg" width="49pt" height="18pt" src="acp-19-11651-2019-ie00003.png"/></svg:svg></span></span> and <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M8" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi>f</mi><mi mathvariant="italic">β</mi><mn mathvariant="normal">1064</mn></msubsup><mo>=</mo><mn mathvariant="normal">1.1</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="53pt" height="18pt" class="svg-formula" dspmath="mathimg" md5hash="e90553b976d5694e776994276bd8e8a9"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-11651-2019-ie00004.svg" width="53pt" height="18pt" src="acp-19-11651-2019-ie00004.png"/></svg:svg></span></span> in the RH range 68&thinsp;%–84&thinsp;%).</p> <p>The higher sensitivity of the shortest wavelength to hygroscopic growth was qualitatively reproduced using Mie simulations. In addition, a good agreement was found between the hygroscopic analysis done in the vertical and in time for Case I, where the latter also allowed us to observe the hydration and dehydration of the smoke mixture. Finally, the impact of aerosol hygroscopicity on the Earth's radiative balance has been evaluated using the GAME (Global Atmospheric Model) radiative transfer model. The model showed an impact with an increase in absolute value of 2.4&thinsp;W&thinsp;m<span class="inline-formula"><sup>−2</sup></span> at the surface with respect to the dry conditions for the hygroscopic layer of Case I (smoke mixture).</p>
url https://www.atmos-chem-phys.net/19/11651/2019/acp-19-11651-2019.pdf
work_keys_str_mv AT fnavasguzman characterizationofaerosolhygroscopicityusingramanlidarmeasurementsattheearlinetstationofpayerne
AT gmartucci characterizationofaerosolhygroscopicityusingramanlidarmeasurementsattheearlinetstationofpayerne
AT mcollaudcoen characterizationofaerosolhygroscopicityusingramanlidarmeasurementsattheearlinetstationofpayerne
AT mjgranadosmunoz characterizationofaerosolhygroscopicityusingramanlidarmeasurementsattheearlinetstationofpayerne
AT mhervo characterizationofaerosolhygroscopicityusingramanlidarmeasurementsattheearlinetstationofpayerne
AT msicard characterizationofaerosolhygroscopicityusingramanlidarmeasurementsattheearlinetstationofpayerne
AT msicard characterizationofaerosolhygroscopicityusingramanlidarmeasurementsattheearlinetstationofpayerne
AT ahaefele characterizationofaerosolhygroscopicityusingramanlidarmeasurementsattheearlinetstationofpayerne
AT ahaefele characterizationofaerosolhygroscopicityusingramanlidarmeasurementsattheearlinetstationofpayerne
_version_ 1725890095830007808
spelling doaj-98d028fdc3074fa3b749e650af7270dd2020-11-24T21:49:00ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242019-09-0119116511166810.5194/acp-19-11651-2019Characterization of aerosol hygroscopicity using Raman lidar measurements at the EARLINET station of PayerneF. Navas-Guzmán0G. Martucci1M. Collaud Coen2M. J. Granados-Muñoz3M. Hervo4M. Sicard5M. Sicard6A. Haefele7A. Haefele8Federal Office of Meteorology and Climatology MeteoSwiss, Payerne, SwitzerlandFederal Office of Meteorology and Climatology MeteoSwiss, Payerne, SwitzerlandFederal Office of Meteorology and Climatology MeteoSwiss, Payerne, SwitzerlandRemote Sensing Laboratory/CommSensLab, Universitat Politècnica de Catalunya, 08034 Barcelona, SpainFederal Office of Meteorology and Climatology MeteoSwiss, Payerne, SwitzerlandRemote Sensing Laboratory/CommSensLab, Universitat Politècnica de Catalunya, 08034 Barcelona, SpainCiències i Tecnologies de l'Espai – Centre de Recerca de l'Aeronàutica i de l'Espai/Institut d'Estudis Espacials de Catalunya (CTE-CRAE/IEEC), Universitat Politècnica de Catalunya, 08034 Barcelona, SpainFederal Office of Meteorology and Climatology MeteoSwiss, Payerne, SwitzerlandDepartment of Physics and Astronomy, University of Western Ontario, London, Canada<p>This study focuses on the analysis of aerosol hygroscopicity using remote sensing techniques. Continuous observations of aerosol backscatter coefficient (<span class="inline-formula"><i>β</i><sup>aer</sup></span>), temperature (<span class="inline-formula"><i>T</i></span>) and water vapor mixing ratio (<span class="inline-formula"><i>r</i></span>) have been performed by means of a Raman lidar system at the aerological station of MeteoSwiss at Payerne (Switzerland) since 2008. These measurements allow us to monitor in a continuous way any change in aerosol properties as a function of the relative humidity (RH). These changes can be observed either in time at a constant altitude or in altitude at a constant time. The accuracy and precision of RH measurements from the lidar have been evaluated using the radiosonde (RS) technique as a reference. A total of 172 RS profiles were used in this intercomparison, which revealed a bias smaller than 4&thinsp;%&thinsp;RH and a standard deviation smaller than 10&thinsp;%&thinsp;RH between both techniques in the whole (in lower) troposphere at nighttime (at daytime), indicating the good performance of the lidar for characterizing RH. A methodology to identify situations favorable to studying aerosol hygroscopicity has been established, and the aerosol hygroscopicity has been characterized by means of the backscatter enhancement factor (<span class="inline-formula"><i>f</i><sub><i>β</i></sub></span>). Two case studies, corresponding to different types of aerosol, are used to illustrate the potential of this methodology.</p> <p>The first case corresponds to a mixture of rural aerosol and smoke particles (smoke mixture), which showed a higher hygroscopicity (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M5" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi>f</mi><mi mathvariant="italic">β</mi><mn mathvariant="normal">355</mn></msubsup><mo>=</mo><mn mathvariant="normal">2.8</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="49pt" height="18pt" class="svg-formula" dspmath="mathimg" md5hash="008c8c56d3437edf710ca649089133e5"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-11651-2019-ie00001.svg" width="49pt" height="18pt" src="acp-19-11651-2019-ie00001.png"/></svg:svg></span></span> and <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M6" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi>f</mi><mi mathvariant="italic">β</mi><mn mathvariant="normal">1064</mn></msubsup><mo>=</mo><mn mathvariant="normal">1.8</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="53pt" height="18pt" class="svg-formula" dspmath="mathimg" md5hash="69cdb07d75295f6b4f0ed35e3132ccbf"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-11651-2019-ie00002.svg" width="53pt" height="18pt" src="acp-19-11651-2019-ie00002.png"/></svg:svg></span></span> in the RH range 73&thinsp;%–97&thinsp;%) than the second case, in which mineral dust was present (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M7" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi>f</mi><mi mathvariant="italic">β</mi><mn mathvariant="normal">355</mn></msubsup><mo>=</mo><mn mathvariant="normal">1.2</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="49pt" height="18pt" class="svg-formula" dspmath="mathimg" md5hash="59b1adb84690727f0d4b37ad02460b89"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-11651-2019-ie00003.svg" width="49pt" height="18pt" src="acp-19-11651-2019-ie00003.png"/></svg:svg></span></span> and <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M8" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi>f</mi><mi mathvariant="italic">β</mi><mn mathvariant="normal">1064</mn></msubsup><mo>=</mo><mn mathvariant="normal">1.1</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="53pt" height="18pt" class="svg-formula" dspmath="mathimg" md5hash="e90553b976d5694e776994276bd8e8a9"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-11651-2019-ie00004.svg" width="53pt" height="18pt" src="acp-19-11651-2019-ie00004.png"/></svg:svg></span></span> in the RH range 68&thinsp;%–84&thinsp;%).</p> <p>The higher sensitivity of the shortest wavelength to hygroscopic growth was qualitatively reproduced using Mie simulations. In addition, a good agreement was found between the hygroscopic analysis done in the vertical and in time for Case I, where the latter also allowed us to observe the hydration and dehydration of the smoke mixture. Finally, the impact of aerosol hygroscopicity on the Earth's radiative balance has been evaluated using the GAME (Global Atmospheric Model) radiative transfer model. The model showed an impact with an increase in absolute value of 2.4&thinsp;W&thinsp;m<span class="inline-formula"><sup>−2</sup></span> at the surface with respect to the dry conditions for the hygroscopic layer of Case I (smoke mixture).</p>https://www.atmos-chem-phys.net/19/11651/2019/acp-19-11651-2019.pdf