Effect of Harmonics on Ferroresonance in Low Voltage Power Factor Correction System—A Case Study
This paper presents a case study of three-phase ferroresonance in a low-voltage power factor correction system and investigates the influence of harmonic distortion on the occurrence of ferroresonance. Ferroresonance is an extremely dangerous and rare phenomenon that causes overvoltages and overcurr...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-05-01
|
Series: | Applied Sciences |
Subjects: | |
Online Access: | https://www.mdpi.com/2076-3417/11/10/4322 |
Summary: | This paper presents a case study of three-phase ferroresonance in a low-voltage power factor correction system and investigates the influence of harmonic distortion on the occurrence of ferroresonance. Ferroresonance is an extremely dangerous and rare phenomenon that causes overvoltages and overcurrents in the system and degrades the power quality. The study is carried out on real field measurements in an industrial plant where ferroresonance occurs in the power factor correction (PFC) system at the detuned reactor. The three-phase ferroresonance analysed in this paper is an extremely rare phenomenon that has never been reported in this type of configuration. The measurement results have shown that in this type of configuration the high harmonic distortion is a necessary condition for ferroresonance to occur. In such conditions, switching on the capacitor stage triggers the ferroresonance with quasi-periodic oscillations supported by the medium voltage grid. The main contribution is the analysis of the three-phase ferroresonance in the detuned PFC system and the influence of the harmonics on the occurrence of the ferroresonance in such a case. The possible solutions to this problem and recommendations to avoid this phenomenon are discussed. |
---|---|
ISSN: | 2076-3417 |