Hybrid Terrestrial-Satellite DVB/IP Infrastructure in Overlay Constellations for Triple-Play Services Access in Rural Areas

This paper discusses the convergence of digital broadcasting and Internet technologies, by elaborating on the design, implementation, and performance evaluation of a hybrid terrestrial/satellite networking infrastructure, enabling triple-play services access in rural areas. At local/district level,...

Full description

Bibliographic Details
Main Authors: E. Pallis, D. Negru, A. Bourdena
Format: Article
Language:English
Published: Hindawi Limited 2010-01-01
Series:International Journal of Digital Multimedia Broadcasting
Online Access:http://dx.doi.org/10.1155/2010/913421
Description
Summary:This paper discusses the convergence of digital broadcasting and Internet technologies, by elaborating on the design, implementation, and performance evaluation of a hybrid terrestrial/satellite networking infrastructure, enabling triple-play services access in rural areas. At local/district level, the paper proposes the exploitation of DVB-T platforms in regenerative configurations for creating terrestrial DVB/IP backhaul between the core backbone (in urban areas) and a number of intermediate communication nodes distributed within the DVB-T broadcasting footprint (in rural areas). In this way, triple play services that are available at the core backbone, are transferred via the regenerative DVB-T/IP backhaul to the entire district and can be accessed by rural users via the corresponding intermediate node. On the other hand, at regional/national level, the paper proposes the exploitation of a satellite interactive digital video broadcasting platform (DVB S2/RCS) as an overlay network that interconnects the regenerative DVB-T/IP platforms, as well as individual users, and services providers, to each other. Performance of the proposed hybrid terrestrial/satellite networking environment is validated through experimental tests that were conducted under real transmission/reception conditions (for the terrestrial segment) and via simulation experiments (for the satellite segment) at a prototype network infrastructure.
ISSN:1687-7578
1687-7586