Single blow-up solutions for a slightly subcritical biharmonic equation

<p>We consider a biharmonic equation under the Navier boundary condition and with a nearly critical exponent (<mml:math alttext="$P_varepsilon$"> <mml:mrow> <mml:msub> <mml:mi>P</mml:mi> <mml:mi>&#949;</mml:mi> </mml:msub> <...

Full description

Bibliographic Details
Format: Article
Language:English
Published: Hindawi Limited 2006-01-01
Series:Abstract and Applied Analysis
Online Access:http://www.hindawi.com/GetArticle.aspx?doi=10.1155/AAA/2006/18387
id doaj-9890db29f3e84cb6be2e62bfd7706c88
record_format Article
spelling doaj-9890db29f3e84cb6be2e62bfd7706c882020-11-24T23:34:37ZengHindawi LimitedAbstract and Applied Analysis1085-33752006-01-012006Single blow-up solutions for a slightly subcritical biharmonic equation<p>We consider a biharmonic equation under the Navier boundary condition and with a nearly critical exponent (<mml:math alttext="$P_varepsilon$"> <mml:mrow> <mml:msub> <mml:mi>P</mml:mi> <mml:mi>&#949;</mml:mi> </mml:msub> </mml:mrow> </mml:math>): <mml:math alttext="$Delta^2u=u^{9-varepsilon}$"> <mml:msup> <mml:mi>&#8710;</mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:mi>u</mml:mi><mml:mo>=</mml:mo><mml:msup> <mml:mi>u</mml:mi> <mml:mrow> <mml:mn>9</mml:mn><mml:mo>&#8722;</mml:mo><mml:mi>&#949;</mml:mi> </mml:mrow> </mml:msup> </mml:math>, <mml:math alttext="$u>0$"> <mml:mi>u</mml:mi><mml:mo>&gt;</mml:mo><mml:mn>0</mml:mn> </mml:math> in <mml:math alttext="$Omega$"> <mml:mi>&#937;</mml:mi> </mml:math> and <mml:math alttext="$u=Delta u=0$"> <mml:mi>u</mml:mi><mml:mo>=</mml:mo><mml:mi>&#8710;</mml:mi><mml:mi>u</mml:mi><mml:mo>=</mml:mo><mml:mn>0</mml:mn> </mml:math> on <mml:math alttext="$partialOmega$"> <mml:mo>&#8706;</mml:mo><mml:mi>&#937;</mml:mi> </mml:math>, where <mml:math alttext="$Omega$"> <mml:mi>&#937;</mml:mi> </mml:math> is a smooth bounded domain in <mml:math alttext="$mathbb{R}^5$"> <mml:msup> <mml:mi>&#8477;</mml:mi> <mml:mn>5</mml:mn> </mml:msup> </mml:math>, <mml:math alttext="$varepsilon>0$"> <mml:mi>&#949;</mml:mi><mml:mo>&gt;</mml:mo><mml:mn>0</mml:mn> </mml:math>. We study the asymptotic behavior of solutions of (<mml:math alttext="$P_varepsilon$"> <mml:mrow> <mml:msub> <mml:mi>P</mml:mi> <mml:mi>&#949;</mml:mi> </mml:msub> </mml:mrow> </mml:math>) which are minimizing for the Sobolev quotient as <mml:math alttext="$varepsilon$"> <mml:mi>&#949;</mml:mi> </mml:math> goes to zero. We show that such solutions concentrate around a point <mml:math alttext="$x_0 in Omega$"> <mml:msub> <mml:mi>x</mml:mi> <mml:mn>0</mml:mn> </mml:msub> <mml:mo>&#8712;</mml:mo><mml:mi>&#937;</mml:mi> </mml:math> as <mml:math alttext="$varepsilon ightarrow 0$"> <mml:mi>&#949;</mml:mi><mml:mo>&#8594;</mml:mo><mml:mn>0</mml:mn> </mml:math>, moreover <mml:math alttext="$x_0$"> <mml:msub> <mml:mi>x</mml:mi> <mml:mn>0</mml:mn> </mml:msub> </mml:math> is a critical point of the Robin's function. Conversely, we show that for any nondegenerate critical point <mml:math alttext="$x_0$"> <mml:msub> <mml:mi>x</mml:mi> <mml:mn>0</mml:mn> </mml:msub> </mml:math> of the Robin's function, there exist solutions of (<mml:math alttext="$P_varepsilon$"> <mml:mrow> <mml:msub> <mml:mi>P</mml:mi> <mml:mi>&#949;</mml:mi> </mml:msub> </mml:mrow> </mml:math>) concentrating around <mml:math alttext="$x_0$"> <mml:msub> <mml:mi>x</mml:mi> <mml:mn>0</mml:mn> </mml:msub> </mml:math> as <mml:math alttext="$varepsilon ightarrow 0$"> <mml:mi>&#949;</mml:mi><mml:mo>&#8594;</mml:mo><mml:mn>0</mml:mn> </mml:math>.</p>http://www.hindawi.com/GetArticle.aspx?doi=10.1155/AAA/2006/18387
collection DOAJ
language English
format Article
sources DOAJ
title Single blow-up solutions for a slightly subcritical biharmonic equation
spellingShingle Single blow-up solutions for a slightly subcritical biharmonic equation
Abstract and Applied Analysis
title_short Single blow-up solutions for a slightly subcritical biharmonic equation
title_full Single blow-up solutions for a slightly subcritical biharmonic equation
title_fullStr Single blow-up solutions for a slightly subcritical biharmonic equation
title_full_unstemmed Single blow-up solutions for a slightly subcritical biharmonic equation
title_sort single blow-up solutions for a slightly subcritical biharmonic equation
publisher Hindawi Limited
series Abstract and Applied Analysis
issn 1085-3375
publishDate 2006-01-01
description <p>We consider a biharmonic equation under the Navier boundary condition and with a nearly critical exponent (<mml:math alttext="$P_varepsilon$"> <mml:mrow> <mml:msub> <mml:mi>P</mml:mi> <mml:mi>&#949;</mml:mi> </mml:msub> </mml:mrow> </mml:math>): <mml:math alttext="$Delta^2u=u^{9-varepsilon}$"> <mml:msup> <mml:mi>&#8710;</mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:mi>u</mml:mi><mml:mo>=</mml:mo><mml:msup> <mml:mi>u</mml:mi> <mml:mrow> <mml:mn>9</mml:mn><mml:mo>&#8722;</mml:mo><mml:mi>&#949;</mml:mi> </mml:mrow> </mml:msup> </mml:math>, <mml:math alttext="$u>0$"> <mml:mi>u</mml:mi><mml:mo>&gt;</mml:mo><mml:mn>0</mml:mn> </mml:math> in <mml:math alttext="$Omega$"> <mml:mi>&#937;</mml:mi> </mml:math> and <mml:math alttext="$u=Delta u=0$"> <mml:mi>u</mml:mi><mml:mo>=</mml:mo><mml:mi>&#8710;</mml:mi><mml:mi>u</mml:mi><mml:mo>=</mml:mo><mml:mn>0</mml:mn> </mml:math> on <mml:math alttext="$partialOmega$"> <mml:mo>&#8706;</mml:mo><mml:mi>&#937;</mml:mi> </mml:math>, where <mml:math alttext="$Omega$"> <mml:mi>&#937;</mml:mi> </mml:math> is a smooth bounded domain in <mml:math alttext="$mathbb{R}^5$"> <mml:msup> <mml:mi>&#8477;</mml:mi> <mml:mn>5</mml:mn> </mml:msup> </mml:math>, <mml:math alttext="$varepsilon>0$"> <mml:mi>&#949;</mml:mi><mml:mo>&gt;</mml:mo><mml:mn>0</mml:mn> </mml:math>. We study the asymptotic behavior of solutions of (<mml:math alttext="$P_varepsilon$"> <mml:mrow> <mml:msub> <mml:mi>P</mml:mi> <mml:mi>&#949;</mml:mi> </mml:msub> </mml:mrow> </mml:math>) which are minimizing for the Sobolev quotient as <mml:math alttext="$varepsilon$"> <mml:mi>&#949;</mml:mi> </mml:math> goes to zero. We show that such solutions concentrate around a point <mml:math alttext="$x_0 in Omega$"> <mml:msub> <mml:mi>x</mml:mi> <mml:mn>0</mml:mn> </mml:msub> <mml:mo>&#8712;</mml:mo><mml:mi>&#937;</mml:mi> </mml:math> as <mml:math alttext="$varepsilon ightarrow 0$"> <mml:mi>&#949;</mml:mi><mml:mo>&#8594;</mml:mo><mml:mn>0</mml:mn> </mml:math>, moreover <mml:math alttext="$x_0$"> <mml:msub> <mml:mi>x</mml:mi> <mml:mn>0</mml:mn> </mml:msub> </mml:math> is a critical point of the Robin's function. Conversely, we show that for any nondegenerate critical point <mml:math alttext="$x_0$"> <mml:msub> <mml:mi>x</mml:mi> <mml:mn>0</mml:mn> </mml:msub> </mml:math> of the Robin's function, there exist solutions of (<mml:math alttext="$P_varepsilon$"> <mml:mrow> <mml:msub> <mml:mi>P</mml:mi> <mml:mi>&#949;</mml:mi> </mml:msub> </mml:mrow> </mml:math>) concentrating around <mml:math alttext="$x_0$"> <mml:msub> <mml:mi>x</mml:mi> <mml:mn>0</mml:mn> </mml:msub> </mml:math> as <mml:math alttext="$varepsilon ightarrow 0$"> <mml:mi>&#949;</mml:mi><mml:mo>&#8594;</mml:mo><mml:mn>0</mml:mn> </mml:math>.</p>
url http://www.hindawi.com/GetArticle.aspx?doi=10.1155/AAA/2006/18387
_version_ 1725528516109271040