Single blow-up solutions for a slightly subcritical biharmonic equation
<p>We consider a biharmonic equation under the Navier boundary condition and with a nearly critical exponent (<mml:math alttext="$P_varepsilon$"> <mml:mrow> <mml:msub> <mml:mi>P</mml:mi> <mml:mi>ε</mml:mi> </mml:msub> <...
Format: | Article |
---|---|
Language: | English |
Published: |
Hindawi Limited
2006-01-01
|
Series: | Abstract and Applied Analysis |
Online Access: | http://www.hindawi.com/GetArticle.aspx?doi=10.1155/AAA/2006/18387 |
id |
doaj-9890db29f3e84cb6be2e62bfd7706c88 |
---|---|
record_format |
Article |
spelling |
doaj-9890db29f3e84cb6be2e62bfd7706c882020-11-24T23:34:37ZengHindawi LimitedAbstract and Applied Analysis1085-33752006-01-012006Single blow-up solutions for a slightly subcritical biharmonic equation<p>We consider a biharmonic equation under the Navier boundary condition and with a nearly critical exponent (<mml:math alttext="$P_varepsilon$"> <mml:mrow> <mml:msub> <mml:mi>P</mml:mi> <mml:mi>ε</mml:mi> </mml:msub> </mml:mrow> </mml:math>): <mml:math alttext="$Delta^2u=u^{9-varepsilon}$"> <mml:msup> <mml:mi>∆</mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:mi>u</mml:mi><mml:mo>=</mml:mo><mml:msup> <mml:mi>u</mml:mi> <mml:mrow> <mml:mn>9</mml:mn><mml:mo>−</mml:mo><mml:mi>ε</mml:mi> </mml:mrow> </mml:msup> </mml:math>, <mml:math alttext="$u>0$"> <mml:mi>u</mml:mi><mml:mo>></mml:mo><mml:mn>0</mml:mn> </mml:math> in <mml:math alttext="$Omega$"> <mml:mi>Ω</mml:mi> </mml:math> and <mml:math alttext="$u=Delta u=0$"> <mml:mi>u</mml:mi><mml:mo>=</mml:mo><mml:mi>∆</mml:mi><mml:mi>u</mml:mi><mml:mo>=</mml:mo><mml:mn>0</mml:mn> </mml:math> on <mml:math alttext="$partialOmega$"> <mml:mo>∂</mml:mo><mml:mi>Ω</mml:mi> </mml:math>, where <mml:math alttext="$Omega$"> <mml:mi>Ω</mml:mi> </mml:math> is a smooth bounded domain in <mml:math alttext="$mathbb{R}^5$"> <mml:msup> <mml:mi>ℝ</mml:mi> <mml:mn>5</mml:mn> </mml:msup> </mml:math>, <mml:math alttext="$varepsilon>0$"> <mml:mi>ε</mml:mi><mml:mo>></mml:mo><mml:mn>0</mml:mn> </mml:math>. We study the asymptotic behavior of solutions of (<mml:math alttext="$P_varepsilon$"> <mml:mrow> <mml:msub> <mml:mi>P</mml:mi> <mml:mi>ε</mml:mi> </mml:msub> </mml:mrow> </mml:math>) which are minimizing for the Sobolev quotient as <mml:math alttext="$varepsilon$"> <mml:mi>ε</mml:mi> </mml:math> goes to zero. We show that such solutions concentrate around a point <mml:math alttext="$x_0 in Omega$"> <mml:msub> <mml:mi>x</mml:mi> <mml:mn>0</mml:mn> </mml:msub> <mml:mo>∈</mml:mo><mml:mi>Ω</mml:mi> </mml:math> as <mml:math alttext="$varepsilon ightarrow 0$"> <mml:mi>ε</mml:mi><mml:mo>→</mml:mo><mml:mn>0</mml:mn> </mml:math>, moreover <mml:math alttext="$x_0$"> <mml:msub> <mml:mi>x</mml:mi> <mml:mn>0</mml:mn> </mml:msub> </mml:math> is a critical point of the Robin's function. Conversely, we show that for any nondegenerate critical point <mml:math alttext="$x_0$"> <mml:msub> <mml:mi>x</mml:mi> <mml:mn>0</mml:mn> </mml:msub> </mml:math> of the Robin's function, there exist solutions of (<mml:math alttext="$P_varepsilon$"> <mml:mrow> <mml:msub> <mml:mi>P</mml:mi> <mml:mi>ε</mml:mi> </mml:msub> </mml:mrow> </mml:math>) concentrating around <mml:math alttext="$x_0$"> <mml:msub> <mml:mi>x</mml:mi> <mml:mn>0</mml:mn> </mml:msub> </mml:math> as <mml:math alttext="$varepsilon ightarrow 0$"> <mml:mi>ε</mml:mi><mml:mo>→</mml:mo><mml:mn>0</mml:mn> </mml:math>.</p>http://www.hindawi.com/GetArticle.aspx?doi=10.1155/AAA/2006/18387 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
title |
Single blow-up solutions for a slightly subcritical biharmonic equation |
spellingShingle |
Single blow-up solutions for a slightly subcritical biharmonic equation Abstract and Applied Analysis |
title_short |
Single blow-up solutions for a slightly subcritical biharmonic equation |
title_full |
Single blow-up solutions for a slightly subcritical biharmonic equation |
title_fullStr |
Single blow-up solutions for a slightly subcritical biharmonic equation |
title_full_unstemmed |
Single blow-up solutions for a slightly subcritical biharmonic equation |
title_sort |
single blow-up solutions for a slightly subcritical biharmonic equation |
publisher |
Hindawi Limited |
series |
Abstract and Applied Analysis |
issn |
1085-3375 |
publishDate |
2006-01-01 |
description |
<p>We consider a biharmonic equation under the Navier boundary condition and with a nearly critical exponent (<mml:math alttext="$P_varepsilon$"> <mml:mrow> <mml:msub> <mml:mi>P</mml:mi> <mml:mi>ε</mml:mi> </mml:msub> </mml:mrow> </mml:math>): <mml:math alttext="$Delta^2u=u^{9-varepsilon}$"> <mml:msup> <mml:mi>∆</mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:mi>u</mml:mi><mml:mo>=</mml:mo><mml:msup> <mml:mi>u</mml:mi> <mml:mrow> <mml:mn>9</mml:mn><mml:mo>−</mml:mo><mml:mi>ε</mml:mi> </mml:mrow> </mml:msup> </mml:math>, <mml:math alttext="$u>0$"> <mml:mi>u</mml:mi><mml:mo>></mml:mo><mml:mn>0</mml:mn> </mml:math> in <mml:math alttext="$Omega$"> <mml:mi>Ω</mml:mi> </mml:math> and <mml:math alttext="$u=Delta u=0$"> <mml:mi>u</mml:mi><mml:mo>=</mml:mo><mml:mi>∆</mml:mi><mml:mi>u</mml:mi><mml:mo>=</mml:mo><mml:mn>0</mml:mn> </mml:math> on <mml:math alttext="$partialOmega$"> <mml:mo>∂</mml:mo><mml:mi>Ω</mml:mi> </mml:math>, where <mml:math alttext="$Omega$"> <mml:mi>Ω</mml:mi> </mml:math> is a smooth bounded domain in <mml:math alttext="$mathbb{R}^5$"> <mml:msup> <mml:mi>ℝ</mml:mi> <mml:mn>5</mml:mn> </mml:msup> </mml:math>, <mml:math alttext="$varepsilon>0$"> <mml:mi>ε</mml:mi><mml:mo>></mml:mo><mml:mn>0</mml:mn> </mml:math>. We study the asymptotic behavior of solutions of (<mml:math alttext="$P_varepsilon$"> <mml:mrow> <mml:msub> <mml:mi>P</mml:mi> <mml:mi>ε</mml:mi> </mml:msub> </mml:mrow> </mml:math>) which are minimizing for the Sobolev quotient as <mml:math alttext="$varepsilon$"> <mml:mi>ε</mml:mi> </mml:math> goes to zero. We show that such solutions concentrate around a point <mml:math alttext="$x_0 in Omega$"> <mml:msub> <mml:mi>x</mml:mi> <mml:mn>0</mml:mn> </mml:msub> <mml:mo>∈</mml:mo><mml:mi>Ω</mml:mi> </mml:math> as <mml:math alttext="$varepsilon ightarrow 0$"> <mml:mi>ε</mml:mi><mml:mo>→</mml:mo><mml:mn>0</mml:mn> </mml:math>, moreover <mml:math alttext="$x_0$"> <mml:msub> <mml:mi>x</mml:mi> <mml:mn>0</mml:mn> </mml:msub> </mml:math> is a critical point of the Robin's function. Conversely, we show that for any nondegenerate critical point <mml:math alttext="$x_0$"> <mml:msub> <mml:mi>x</mml:mi> <mml:mn>0</mml:mn> </mml:msub> </mml:math> of the Robin's function, there exist solutions of (<mml:math alttext="$P_varepsilon$"> <mml:mrow> <mml:msub> <mml:mi>P</mml:mi> <mml:mi>ε</mml:mi> </mml:msub> </mml:mrow> </mml:math>) concentrating around <mml:math alttext="$x_0$"> <mml:msub> <mml:mi>x</mml:mi> <mml:mn>0</mml:mn> </mml:msub> </mml:math> as <mml:math alttext="$varepsilon ightarrow 0$"> <mml:mi>ε</mml:mi><mml:mo>→</mml:mo><mml:mn>0</mml:mn> </mml:math>.</p> |
url |
http://www.hindawi.com/GetArticle.aspx?doi=10.1155/AAA/2006/18387 |
_version_ |
1725528516109271040 |