A Haptic Model for the Quantum Phase of Fermions and Bosons in Hilbert Space Based on Knot Theory
A generalization of the famous Dirac belt trick opens up the way to a haptic model for quantum phases of fermions and bosons in Hilbert space based on knot theory. We introduce a simple paper strip model as an aid for visualization of the quantum phases before and after Hopf-mapping, which can be ex...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2019-03-01
|
Series: | Symmetry |
Subjects: | |
Online Access: | https://www.mdpi.com/2073-8994/11/3/426 |
Summary: | A generalization of the famous Dirac belt trick opens up the way to a haptic model for quantum phases of fermions and bosons in Hilbert space based on knot theory. We introduce a simple paper strip model as an aid for visualization of the quantum phases before and after Hopf-mapping, which can be extended to arbitrary spin states with almost no mathematical formalism. Knot theory arises naturally, leading to the Jones polynomials derived from Artin’s braid group for fermionic knots and for bosonic links. The paper strip model explicitly illuminates the relation between these knots and links within the <inline-formula> <math display="inline"> <semantics> <mrow> <mi>S</mi> <mi>U</mi> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </semantics> </math> </inline-formula>-representation of spin-jstates in <inline-formula> <math display="inline"> <semantics> <msup> <mi>C</mi> <mrow> <mn>2</mn> <mi>j</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> </semantics> </math> </inline-formula> before Hopf-mapping and the number <inline-formula> <math display="inline"> <semantics> <mrow> <mi>p</mi> <mo>=</mo> <mn>2</mn> <mi>j</mi> </mrow> </semantics> </math> </inline-formula> of nodes in the stellar representation in <inline-formula> <math display="inline"> <semantics> <mrow> <mi>C</mi> <msup> <mi>P</mi> <mn>1</mn> </msup> </mrow> </semantics> </math> </inline-formula> after Hopf mapping. |
---|---|
ISSN: | 2073-8994 |