Fibronectin Binding Is Required for Acquisition of Mesenchymal/Endothelial Differentiation Potential in Human Circulating Monocytes

We previously reported monocyte-derived multipotential cells (MOMCs), which include progenitors capable of differentiating into a variety of mesenchymal cells and endothelial cells. In vitro generation of MOMCs from circulating CD14+ monocytes requires their binding to extracellular matrix (ECM) pro...

Full description

Bibliographic Details
Main Authors: Noriyuki Seta, Yuka Okazaki, Keisuke Izumi, Hiroshi Miyazaki, Takashi Kato, Masataka Kuwana
Format: Article
Language:English
Published: Hindawi Limited 2012-01-01
Series:Clinical and Developmental Immunology
Online Access:http://dx.doi.org/10.1155/2012/820827
Description
Summary:We previously reported monocyte-derived multipotential cells (MOMCs), which include progenitors capable of differentiating into a variety of mesenchymal cells and endothelial cells. In vitro generation of MOMCs from circulating CD14+ monocytes requires their binding to extracellular matrix (ECM) protein and exposure to soluble factor(s) derived from circulating CD14- cells. Here, we investigated the molecular factors involved in MOMC generation by examining the binding of monocytes to ECM proteins. We found that MOMCs were obtained on the fibronectin, but not on type I collagen, laminin, or poly-L-lysine. MOMC generation was followed by changes in the expression profiles of transcription factors and was completely inhibited by either anti-α5 integrin antibody or a synthetic peptide that competed with the RGD domain for the β1-integrin binding site. These results indicate that acquisition of the multidifferentiation potential by circulating monocytes depends on their binding to the RGD domain of fibronectin via cell-surface α5β1 integrin.
ISSN:1740-2522
1740-2530