A Robust Nonlinear Observer for a Class of Neural Mass Models
A new method of designing a robust nonlinear observer is presented for a class of neural mass models by using the Lur’e system theory and the projection lemma. The observer is robust towards input uncertainty and measurement noise. It is applied to estimate the unmeasured membrane potential of neura...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2014-01-01
|
Series: | The Scientific World Journal |
Online Access: | http://dx.doi.org/10.1155/2014/215943 |
Summary: | A new method of designing a robust nonlinear observer is presented for a class of neural mass models by using the Lur’e system theory and the projection lemma. The observer is robust towards input uncertainty and measurement noise. It is applied to estimate the unmeasured membrane potential of neural populations from the electroencephalogram (EEG) produced by the neural mass models. An illustrative example shows the effectiveness of the proposed method. |
---|---|
ISSN: | 2356-6140 1537-744X |