EBCR: Empirical Bayes concordance ratio method to improve similarity measurement in memory-based collaborative filtering.
Recommender systems aim to provide users with a selection of items, based on predicting their preferences for items they have not yet rated, thus helping them filter out irrelevant ones from a large product catalogue. Collaborative filtering is a widely used mechanism to predict a particular user...
Main Authors: | Yu Du, Nicolas Sutton-Charani, Sylvie Ranwez, Vincent Ranwez |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2021-01-01
|
Series: | PLoS ONE |
Online Access: | https://doi.org/10.1371/journal.pone.0255929 |
Similar Items
-
EBCR: Empirical Bayes concordance ratio method to improve similarity measurement in memory-based collaborative filtering
by: Yu Du, et al.
Published: (2021-01-01) -
Composition Automatique de Documents Hypermédia Adaptatifs à partir d'Ontologies et de Requêtes Intentionnelles de l'Utilisateur
by: Ranwez, Sylvie
Published: (2000) -
Les ontologies comme support à l'interaction et à la personnalisation dans un processus décisionnel. Exploitation de la sémantique pour favoriser l'automatisation cognitive
by: Ranwez, Sylvie
Published: (2013) -
Méthodes efficaces pour reconstruire de grandes phylogénies suivant le principe du maximum de vraisemblance
by: Ranwez, Vincent
Published: (2002) -
Two Simple and Efficient Algorithms to Compute the SP-Score Objective Function of a Multiple Sequence Alignment.
by: Vincent Ranwez
Published: (2016-01-01)