Invariant Scalar Product and Associated Structures for Tachyonic Klein–Gordon Equation and Helmholtz Equation

Although describing very different physical systems, both the Klein–Gordon equation for tachyons (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>m</mi><mn>2</mn><...

Full description

Bibliographic Details
Main Authors: Francisco F. López-Ruiz, Julio Guerrero, Victor Aldaya
Format: Article
Language:English
Published: MDPI AG 2021-07-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/13/7/1302
id doaj-9834416992be4999b5cdfcefbc243cbb
record_format Article
spelling doaj-9834416992be4999b5cdfcefbc243cbb2021-07-23T14:09:36ZengMDPI AGSymmetry2073-89942021-07-01131302130210.3390/sym13071302Invariant Scalar Product and Associated Structures for Tachyonic Klein–Gordon Equation and Helmholtz EquationFrancisco F. López-Ruiz0Julio Guerrero1Victor Aldaya2Departamento de Física Aplicada, Campus de Puerto Real, Universidad de Cádiz, Puerto Real, E-11510 Cádiz, SpainDepartamento de Matemáticas, Campus las Lagunillas, Universidad de Jaén, E-23071 Jaén, SpainInstituto de Astrofísica de Andalucía (IAA-CSIC), Glorieta de la Astronomía, E-18080 Granada, SpainAlthough describing very different physical systems, both the Klein–Gordon equation for tachyons (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>m</mi><mn>2</mn></msup><mo><</mo><mn>0</mn></mrow></semantics></math></inline-formula>) and the Helmholtz equation share a remarkable property: a unitary and irreducible representation of the corresponding invariance group on a suitable subspace of solutions is only achieved if a non-local scalar product is defined. Then, a subset of oscillatory solutions of the Helmholtz equation supports a unirrep of the Euclidean group, and a subset of oscillatory solutions of the Klein–Gordon equation with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>m</mi><mn>2</mn></msup><mo><</mo><mn>0</mn></mrow></semantics></math></inline-formula> supports the scalar tachyonic representation of the Poincaré group. As a consequence, these systems also share similar structures, such as certain singularized solutions and projectors on the representation spaces, but they must be treated carefully in each case. We analyze differences and analogies, compare both equations with the conventional <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>m</mi><mn>2</mn></msup><mo>></mo><mn>0</mn></mrow></semantics></math></inline-formula> Klein–Gordon equation, and provide a unified framework for the scalar products of the three equations.https://www.mdpi.com/2073-8994/13/7/1302unitary and irreducible representationPoincaré groupEuclidean groupnon-local scalar producttachyonic scalar field
collection DOAJ
language English
format Article
sources DOAJ
author Francisco F. López-Ruiz
Julio Guerrero
Victor Aldaya
spellingShingle Francisco F. López-Ruiz
Julio Guerrero
Victor Aldaya
Invariant Scalar Product and Associated Structures for Tachyonic Klein–Gordon Equation and Helmholtz Equation
Symmetry
unitary and irreducible representation
Poincaré group
Euclidean group
non-local scalar product
tachyonic scalar field
author_facet Francisco F. López-Ruiz
Julio Guerrero
Victor Aldaya
author_sort Francisco F. López-Ruiz
title Invariant Scalar Product and Associated Structures for Tachyonic Klein–Gordon Equation and Helmholtz Equation
title_short Invariant Scalar Product and Associated Structures for Tachyonic Klein–Gordon Equation and Helmholtz Equation
title_full Invariant Scalar Product and Associated Structures for Tachyonic Klein–Gordon Equation and Helmholtz Equation
title_fullStr Invariant Scalar Product and Associated Structures for Tachyonic Klein–Gordon Equation and Helmholtz Equation
title_full_unstemmed Invariant Scalar Product and Associated Structures for Tachyonic Klein–Gordon Equation and Helmholtz Equation
title_sort invariant scalar product and associated structures for tachyonic klein–gordon equation and helmholtz equation
publisher MDPI AG
series Symmetry
issn 2073-8994
publishDate 2021-07-01
description Although describing very different physical systems, both the Klein–Gordon equation for tachyons (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>m</mi><mn>2</mn></msup><mo><</mo><mn>0</mn></mrow></semantics></math></inline-formula>) and the Helmholtz equation share a remarkable property: a unitary and irreducible representation of the corresponding invariance group on a suitable subspace of solutions is only achieved if a non-local scalar product is defined. Then, a subset of oscillatory solutions of the Helmholtz equation supports a unirrep of the Euclidean group, and a subset of oscillatory solutions of the Klein–Gordon equation with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>m</mi><mn>2</mn></msup><mo><</mo><mn>0</mn></mrow></semantics></math></inline-formula> supports the scalar tachyonic representation of the Poincaré group. As a consequence, these systems also share similar structures, such as certain singularized solutions and projectors on the representation spaces, but they must be treated carefully in each case. We analyze differences and analogies, compare both equations with the conventional <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>m</mi><mn>2</mn></msup><mo>></mo><mn>0</mn></mrow></semantics></math></inline-formula> Klein–Gordon equation, and provide a unified framework for the scalar products of the three equations.
topic unitary and irreducible representation
Poincaré group
Euclidean group
non-local scalar product
tachyonic scalar field
url https://www.mdpi.com/2073-8994/13/7/1302
work_keys_str_mv AT franciscoflopezruiz invariantscalarproductandassociatedstructuresfortachyonickleingordonequationandhelmholtzequation
AT julioguerrero invariantscalarproductandassociatedstructuresfortachyonickleingordonequationandhelmholtzequation
AT victoraldaya invariantscalarproductandassociatedstructuresfortachyonickleingordonequationandhelmholtzequation
_version_ 1721285532073328640