Invariant Scalar Product and Associated Structures for Tachyonic Klein–Gordon Equation and Helmholtz Equation
Although describing very different physical systems, both the Klein–Gordon equation for tachyons (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>m</mi><mn>2</mn><...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-07-01
|
Series: | Symmetry |
Subjects: | |
Online Access: | https://www.mdpi.com/2073-8994/13/7/1302 |
id |
doaj-9834416992be4999b5cdfcefbc243cbb |
---|---|
record_format |
Article |
spelling |
doaj-9834416992be4999b5cdfcefbc243cbb2021-07-23T14:09:36ZengMDPI AGSymmetry2073-89942021-07-01131302130210.3390/sym13071302Invariant Scalar Product and Associated Structures for Tachyonic Klein–Gordon Equation and Helmholtz EquationFrancisco F. López-Ruiz0Julio Guerrero1Victor Aldaya2Departamento de Física Aplicada, Campus de Puerto Real, Universidad de Cádiz, Puerto Real, E-11510 Cádiz, SpainDepartamento de Matemáticas, Campus las Lagunillas, Universidad de Jaén, E-23071 Jaén, SpainInstituto de Astrofísica de Andalucía (IAA-CSIC), Glorieta de la Astronomía, E-18080 Granada, SpainAlthough describing very different physical systems, both the Klein–Gordon equation for tachyons (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>m</mi><mn>2</mn></msup><mo><</mo><mn>0</mn></mrow></semantics></math></inline-formula>) and the Helmholtz equation share a remarkable property: a unitary and irreducible representation of the corresponding invariance group on a suitable subspace of solutions is only achieved if a non-local scalar product is defined. Then, a subset of oscillatory solutions of the Helmholtz equation supports a unirrep of the Euclidean group, and a subset of oscillatory solutions of the Klein–Gordon equation with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>m</mi><mn>2</mn></msup><mo><</mo><mn>0</mn></mrow></semantics></math></inline-formula> supports the scalar tachyonic representation of the Poincaré group. As a consequence, these systems also share similar structures, such as certain singularized solutions and projectors on the representation spaces, but they must be treated carefully in each case. We analyze differences and analogies, compare both equations with the conventional <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>m</mi><mn>2</mn></msup><mo>></mo><mn>0</mn></mrow></semantics></math></inline-formula> Klein–Gordon equation, and provide a unified framework for the scalar products of the three equations.https://www.mdpi.com/2073-8994/13/7/1302unitary and irreducible representationPoincaré groupEuclidean groupnon-local scalar producttachyonic scalar field |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Francisco F. López-Ruiz Julio Guerrero Victor Aldaya |
spellingShingle |
Francisco F. López-Ruiz Julio Guerrero Victor Aldaya Invariant Scalar Product and Associated Structures for Tachyonic Klein–Gordon Equation and Helmholtz Equation Symmetry unitary and irreducible representation Poincaré group Euclidean group non-local scalar product tachyonic scalar field |
author_facet |
Francisco F. López-Ruiz Julio Guerrero Victor Aldaya |
author_sort |
Francisco F. López-Ruiz |
title |
Invariant Scalar Product and Associated Structures for Tachyonic Klein–Gordon Equation and Helmholtz Equation |
title_short |
Invariant Scalar Product and Associated Structures for Tachyonic Klein–Gordon Equation and Helmholtz Equation |
title_full |
Invariant Scalar Product and Associated Structures for Tachyonic Klein–Gordon Equation and Helmholtz Equation |
title_fullStr |
Invariant Scalar Product and Associated Structures for Tachyonic Klein–Gordon Equation and Helmholtz Equation |
title_full_unstemmed |
Invariant Scalar Product and Associated Structures for Tachyonic Klein–Gordon Equation and Helmholtz Equation |
title_sort |
invariant scalar product and associated structures for tachyonic klein–gordon equation and helmholtz equation |
publisher |
MDPI AG |
series |
Symmetry |
issn |
2073-8994 |
publishDate |
2021-07-01 |
description |
Although describing very different physical systems, both the Klein–Gordon equation for tachyons (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>m</mi><mn>2</mn></msup><mo><</mo><mn>0</mn></mrow></semantics></math></inline-formula>) and the Helmholtz equation share a remarkable property: a unitary and irreducible representation of the corresponding invariance group on a suitable subspace of solutions is only achieved if a non-local scalar product is defined. Then, a subset of oscillatory solutions of the Helmholtz equation supports a unirrep of the Euclidean group, and a subset of oscillatory solutions of the Klein–Gordon equation with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>m</mi><mn>2</mn></msup><mo><</mo><mn>0</mn></mrow></semantics></math></inline-formula> supports the scalar tachyonic representation of the Poincaré group. As a consequence, these systems also share similar structures, such as certain singularized solutions and projectors on the representation spaces, but they must be treated carefully in each case. We analyze differences and analogies, compare both equations with the conventional <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>m</mi><mn>2</mn></msup><mo>></mo><mn>0</mn></mrow></semantics></math></inline-formula> Klein–Gordon equation, and provide a unified framework for the scalar products of the three equations. |
topic |
unitary and irreducible representation Poincaré group Euclidean group non-local scalar product tachyonic scalar field |
url |
https://www.mdpi.com/2073-8994/13/7/1302 |
work_keys_str_mv |
AT franciscoflopezruiz invariantscalarproductandassociatedstructuresfortachyonickleingordonequationandhelmholtzequation AT julioguerrero invariantscalarproductandassociatedstructuresfortachyonickleingordonequationandhelmholtzequation AT victoraldaya invariantscalarproductandassociatedstructuresfortachyonickleingordonequationandhelmholtzequation |
_version_ |
1721285532073328640 |