Loss of a Clueless-dGRASP complex results in ER stress and blocks Integrin exit from the perinuclear endoplasmic reticulum in Drosophila larval muscle
Drosophila Clueless (Clu) and its conserved orthologs are known for their role in the prevention of mitochondrial clustering. Here, we uncover a new role for Clu in the delivery of integrin subunits in muscle tissue. In clu mutants, αPS2 integrin, but not βPS integrin, abnormally accumulates in a pe...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
The Company of Biologists
2015-07-01
|
Series: | Biology Open |
Subjects: | |
Online Access: | http://bio.biologists.org/content/4/5/636 |
id |
doaj-9822a097ea7e483c842b373d558fc3c3 |
---|---|
record_format |
Article |
spelling |
doaj-9822a097ea7e483c842b373d558fc3c32021-06-02T13:17:11ZengThe Company of BiologistsBiology Open2046-63902015-07-014563664810.1242/bio.201511551201511551Loss of a Clueless-dGRASP complex results in ER stress and blocks Integrin exit from the perinuclear endoplasmic reticulum in Drosophila larval muscleZong-Heng Wang0Catherine Rabouille1Erika R. Geisbrecht2 Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri, Kansas City, MO 64110, USA Hubrecht Institute-KNAW & University Medical Center Utrecht, 3584 CT Utrecht, The Netherlands Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri, Kansas City, MO 64110, USA Drosophila Clueless (Clu) and its conserved orthologs are known for their role in the prevention of mitochondrial clustering. Here, we uncover a new role for Clu in the delivery of integrin subunits in muscle tissue. In clu mutants, αPS2 integrin, but not βPS integrin, abnormally accumulates in a perinuclear endoplasmic reticulum (ER) subdomain, a site that mirrors the endogenous localization of Clu. Loss of components essential for mitochondrial distribution do not phenocopy the clu mutant αPS2 phenotype. Conversely, RNAi knockdown of the Drosophila Golgi reassembly and stacking protein GRASP55/65 (dGRASP) recapitulates clu defects, including the abnormal accumulation of αPS2 and larval locomotor activity. Both Clu and dGRASP proteins physically interact and loss of Clu displaces dGRASP from ER exit sites, suggesting that Clu cooperates with dGRASP for the exit of αPS2 from a perinuclear subdomain in the ER. We also found that Clu and dGRASP loss of function leads to ER stress and that the stability of the ER exit site protein Sec16 is severely compromised in the clu mutants, thus explaining the ER accumulation of αPS2. Remarkably, exposure of clu RNAi larvae to chemical chaperones restores both αPS2 delivery and functional ER exit sites. We propose that Clu together with dGRASP prevents ER stress and therefore maintains Sec16 stability essential for the functional organization of perinuclear early secretory pathway. This, in turn, is essential for integrin subunit αPS2 ER exit in Drosophila larval myofibers.http://bio.biologists.org/content/4/5/636DrosophilaMuscleIntegrinCluelessdGRASPTrafficking |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Zong-Heng Wang Catherine Rabouille Erika R. Geisbrecht |
spellingShingle |
Zong-Heng Wang Catherine Rabouille Erika R. Geisbrecht Loss of a Clueless-dGRASP complex results in ER stress and blocks Integrin exit from the perinuclear endoplasmic reticulum in Drosophila larval muscle Biology Open Drosophila Muscle Integrin Clueless dGRASP Trafficking |
author_facet |
Zong-Heng Wang Catherine Rabouille Erika R. Geisbrecht |
author_sort |
Zong-Heng Wang |
title |
Loss of a Clueless-dGRASP complex results in ER stress and blocks Integrin exit from the perinuclear endoplasmic reticulum in Drosophila larval muscle |
title_short |
Loss of a Clueless-dGRASP complex results in ER stress and blocks Integrin exit from the perinuclear endoplasmic reticulum in Drosophila larval muscle |
title_full |
Loss of a Clueless-dGRASP complex results in ER stress and blocks Integrin exit from the perinuclear endoplasmic reticulum in Drosophila larval muscle |
title_fullStr |
Loss of a Clueless-dGRASP complex results in ER stress and blocks Integrin exit from the perinuclear endoplasmic reticulum in Drosophila larval muscle |
title_full_unstemmed |
Loss of a Clueless-dGRASP complex results in ER stress and blocks Integrin exit from the perinuclear endoplasmic reticulum in Drosophila larval muscle |
title_sort |
loss of a clueless-dgrasp complex results in er stress and blocks integrin exit from the perinuclear endoplasmic reticulum in drosophila larval muscle |
publisher |
The Company of Biologists |
series |
Biology Open |
issn |
2046-6390 |
publishDate |
2015-07-01 |
description |
Drosophila Clueless (Clu) and its conserved orthologs are known for their role in the prevention of mitochondrial clustering. Here, we uncover a new role for Clu in the delivery of integrin subunits in muscle tissue. In clu mutants, αPS2 integrin, but not βPS integrin, abnormally accumulates in a perinuclear endoplasmic reticulum (ER) subdomain, a site that mirrors the endogenous localization of Clu. Loss of components essential for mitochondrial distribution do not phenocopy the clu mutant αPS2 phenotype. Conversely, RNAi knockdown of the Drosophila Golgi reassembly and stacking protein GRASP55/65 (dGRASP) recapitulates clu defects, including the abnormal accumulation of αPS2 and larval locomotor activity. Both Clu and dGRASP proteins physically interact and loss of Clu displaces dGRASP from ER exit sites, suggesting that Clu cooperates with dGRASP for the exit of αPS2 from a perinuclear subdomain in the ER. We also found that Clu and dGRASP loss of function leads to ER stress and that the stability of the ER exit site protein Sec16 is severely compromised in the clu mutants, thus explaining the ER accumulation of αPS2. Remarkably, exposure of clu RNAi larvae to chemical chaperones restores both αPS2 delivery and functional ER exit sites. We propose that Clu together with dGRASP prevents ER stress and therefore maintains Sec16 stability essential for the functional organization of perinuclear early secretory pathway. This, in turn, is essential for integrin subunit αPS2 ER exit in Drosophila larval myofibers. |
topic |
Drosophila Muscle Integrin Clueless dGRASP Trafficking |
url |
http://bio.biologists.org/content/4/5/636 |
work_keys_str_mv |
AT zonghengwang lossofacluelessdgraspcomplexresultsinerstressandblocksintegrinexitfromtheperinuclearendoplasmicreticulumindrosophilalarvalmuscle AT catherinerabouille lossofacluelessdgraspcomplexresultsinerstressandblocksintegrinexitfromtheperinuclearendoplasmicreticulumindrosophilalarvalmuscle AT erikargeisbrecht lossofacluelessdgraspcomplexresultsinerstressandblocksintegrinexitfromtheperinuclearendoplasmicreticulumindrosophilalarvalmuscle |
_version_ |
1721404209627136000 |