Three-component coupling of aryl iodides, allenes, and aldehydes catalyzed by a Co/Cr-hybrid catalyst

The cobalt/chromium-catalyzed three-component coupling of aryl iodides, allenes, and aldehydes has been developed to afford multi-substituted homoallylic alcohols in a diastereoselective manner. Control experiments for understanding the reaction mechanism reveal that the cobalt catalyst is involved...

Full description

Bibliographic Details
Main Authors: Kimihiro Komeyama, Shunsuke Sakiyama, Kento Iwashita, Itaru Osaka, Ken Takaki
Format: Article
Language:English
Published: Beilstein-Institut 2018-06-01
Series:Beilstein Journal of Organic Chemistry
Subjects:
Online Access:https://doi.org/10.3762/bjoc.14.118
Description
Summary:The cobalt/chromium-catalyzed three-component coupling of aryl iodides, allenes, and aldehydes has been developed to afford multi-substituted homoallylic alcohols in a diastereoselective manner. Control experiments for understanding the reaction mechanism reveal that the cobalt catalyst is involved in the oxidative addition and carbometalation steps in the reaction, whereas the chromium salt generates highly nucleophilic allylchromium intermediates from allylcobalt species, without the loss of stereochemical information, to allow the addition to aldehydes.
ISSN:1860-5397