Shear Strengths of Different Bolt Connectors on the Large Span of Aluminium Alloy Honeycomb Sandwich Structure

This study investigates the shear capacity of aluminum alloy honeycomb sandwich plates connected by high-strength, ordinary, or self-tapping bolts. For that purpose, experimental tests and finite elements are carried out. The failure of a high-strength bolt connector is driven by bending deformation...

Full description

Bibliographic Details
Main Authors: Caiqi Zhao, Weidong Zheng, Jun Ma, Yangjian Zhao
Format: Article
Language:English
Published: MDPI AG 2017-04-01
Series:Applied Sciences
Subjects:
Online Access:http://www.mdpi.com/2076-3417/7/5/450
Description
Summary:This study investigates the shear capacity of aluminum alloy honeycomb sandwich plates connected by high-strength, ordinary, or self-tapping bolts. For that purpose, experimental tests and finite elements are carried out. The failure of a high-strength bolt connector is driven by bending deformations developed in the bolt that deform connection plate and pad openings. In the case of ordinary bolt connectors, stress concentration on the bolt shear surface causes a large shear deformation that finally leads to failure. In the case of self-tapping bolt connectors, the insufficient mechanical bite force of the screw thread yields the bolt misalignment and concentrates shear deformation. As a result, the high-strength bolt connector is the most efficient design solution. If the bolt hole edge distance is more than 1.5 times as much as the bolt diameter, the connection performance becomes insensitive to this parameter. The practical formula for evaluating the connector shear capacity is derived from experimental data.
ISSN:2076-3417