Improve P300 Speller Performance by Changing Stimulus Onset Asynchrony (SOA) Without Retraining the Subject-Independent Model
P300 speller is a famous brain-computer interface (BCI) method, which translates mental attention by identifying the event-related potentials evoked by target stimulus. To improve its efficiency, subject-independent classification models and dynamical stopping strategies have been introduced into P3...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2019-01-01
|
Series: | IEEE Access |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/8830444/ |
id |
doaj-97fce830997e4f72a23f5c423f446caf |
---|---|
record_format |
Article |
spelling |
doaj-97fce830997e4f72a23f5c423f446caf2021-04-05T17:17:17ZengIEEEIEEE Access2169-35362019-01-01713413713414410.1109/ACCESS.2019.29405938830444Improve P300 Speller Performance by Changing Stimulus Onset Asynchrony (SOA) Without Retraining the Subject-Independent ModelYuqi Xue0Jiabei Tang1Feng He2Minpeng Xu3Hongzhi Qi4https://orcid.org/0000-0001-5719-2718Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, ChinaDepartment of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, ChinaDepartment of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, ChinaDepartment of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, ChinaDepartment of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, ChinaP300 speller is a famous brain-computer interface (BCI) method, which translates mental attention by identifying the event-related potentials evoked by target stimulus. To improve its efficiency, subject-independent classification models and dynamical stopping strategies have been introduced into P300 speller. However, it has still not been determined whether these methods remain effective when the configurations of visual stimuli are changed. This study investigates whether subject-independent dynamical stopping model (SIDSM) can maintain high efficiency in the case of stimulus onset asynchrony (SOA) change. The SIDSM was built on a 55-subject database, and the classification efficiency was tested online with 14 new subjects. During the online experiment, four SOA conditions were tested, one of which had the same SOA as the modeling data, while the other three had different SOA settings. The SIDSM obtained comparable classification accuracy under different SOA settings. Thus, the efficiency of information transmission can be significantly improved by changing SOA only, without retraining the model. These results suggest that SIDSM has good robustness to changes in stimulus settings and can provide P300 speller with good flexibility for individual optimization.https://ieeexplore.ieee.org/document/8830444/Brain Computer InterfaceP300 SpellerStimulus Onset AsynchronySubject-Independent Model |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Yuqi Xue Jiabei Tang Feng He Minpeng Xu Hongzhi Qi |
spellingShingle |
Yuqi Xue Jiabei Tang Feng He Minpeng Xu Hongzhi Qi Improve P300 Speller Performance by Changing Stimulus Onset Asynchrony (SOA) Without Retraining the Subject-Independent Model IEEE Access Brain Computer Interface P300 Speller Stimulus Onset Asynchrony Subject-Independent Model |
author_facet |
Yuqi Xue Jiabei Tang Feng He Minpeng Xu Hongzhi Qi |
author_sort |
Yuqi Xue |
title |
Improve P300 Speller Performance by Changing Stimulus Onset Asynchrony (SOA) Without Retraining the Subject-Independent Model |
title_short |
Improve P300 Speller Performance by Changing Stimulus Onset Asynchrony (SOA) Without Retraining the Subject-Independent Model |
title_full |
Improve P300 Speller Performance by Changing Stimulus Onset Asynchrony (SOA) Without Retraining the Subject-Independent Model |
title_fullStr |
Improve P300 Speller Performance by Changing Stimulus Onset Asynchrony (SOA) Without Retraining the Subject-Independent Model |
title_full_unstemmed |
Improve P300 Speller Performance by Changing Stimulus Onset Asynchrony (SOA) Without Retraining the Subject-Independent Model |
title_sort |
improve p300 speller performance by changing stimulus onset asynchrony (soa) without retraining the subject-independent model |
publisher |
IEEE |
series |
IEEE Access |
issn |
2169-3536 |
publishDate |
2019-01-01 |
description |
P300 speller is a famous brain-computer interface (BCI) method, which translates mental attention by identifying the event-related potentials evoked by target stimulus. To improve its efficiency, subject-independent classification models and dynamical stopping strategies have been introduced into P300 speller. However, it has still not been determined whether these methods remain effective when the configurations of visual stimuli are changed. This study investigates whether subject-independent dynamical stopping model (SIDSM) can maintain high efficiency in the case of stimulus onset asynchrony (SOA) change. The SIDSM was built on a 55-subject database, and the classification efficiency was tested online with 14 new subjects. During the online experiment, four SOA conditions were tested, one of which had the same SOA as the modeling data, while the other three had different SOA settings. The SIDSM obtained comparable classification accuracy under different SOA settings. Thus, the efficiency of information transmission can be significantly improved by changing SOA only, without retraining the model. These results suggest that SIDSM has good robustness to changes in stimulus settings and can provide P300 speller with good flexibility for individual optimization. |
topic |
Brain Computer Interface P300 Speller Stimulus Onset Asynchrony Subject-Independent Model |
url |
https://ieeexplore.ieee.org/document/8830444/ |
work_keys_str_mv |
AT yuqixue improvep300spellerperformancebychangingstimulusonsetasynchronysoawithoutretrainingthesubjectindependentmodel AT jiabeitang improvep300spellerperformancebychangingstimulusonsetasynchronysoawithoutretrainingthesubjectindependentmodel AT fenghe improvep300spellerperformancebychangingstimulusonsetasynchronysoawithoutretrainingthesubjectindependentmodel AT minpengxu improvep300spellerperformancebychangingstimulusonsetasynchronysoawithoutretrainingthesubjectindependentmodel AT hongzhiqi improvep300spellerperformancebychangingstimulusonsetasynchronysoawithoutretrainingthesubjectindependentmodel |
_version_ |
1721539932246245376 |