The Added-Value of Remotely-Sensed Soil Moisture Data for Agricultural Drought Detection in Argentina

In countries where the economy relies mostly on agricultural-livestock activities, such as Argentina, droughts cause significant economic losses. Currently, the most-used drought indices by the Argentinian National Meteorological and Hydrological Services are based on field precipitation data, such...

Full description

Bibliographic Details
Main Authors: Mercedes Salvia, Nilda Sanchez, Maria Piles, Romina Ruscica, Angel Gonzalez-Zamora, Esteban Roitberg, Jose Martinez-Fernandez
Format: Article
Language:English
Published: IEEE 2021-01-01
Series:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
Subjects:
Online Access:https://ieeexplore.ieee.org/document/9444130/
Description
Summary:In countries where the economy relies mostly on agricultural-livestock activities, such as Argentina, droughts cause significant economic losses. Currently, the most-used drought indices by the Argentinian National Meteorological and Hydrological Services are based on field precipitation data, such as the standardized precipitation index (SPI) and the standardized precipitation evapotranspiration index (SPEI). In this article, we explored the performance of the satellite-based soil moisture agricultural drought index (SMADI) for agricultural drought detection in Argentina during 2010-2015, and compared it with the one from the standardized soil moisture anomalies (SSMA), SPI and SPEI (at one-month and three-month temporal scales), using the Agricultural Ministry's drought emergency database as a benchmark. The performances were analyzed in terms of the suitability of each index to be included in an early warning system for agricultural droughts, including true positive rate (TPR), and both false positive and false negative rates. In our experiments, SMADI showed the best overall performance, with the highest TPR and F1-score, and the second best false positive rate (FPR), positive predictive value, and overall accuracy. SMADI also showed the largest difference between TPR and FPR. SSMA showed the lowest FPR, but also the lowest TPR, making it not useful for an alert system. Furthermore, field precipitation-based indices, yet simple and widely used, showed not to be suitable indicators for detection of agricultural drought for Argentina, neither in the one-month nor in the three-month scale.
ISSN:2151-1535