Pattern formation mechanisms in sphere-forming diblock copolymer thin films

The order-disorder transition of a sphere-forming block copolymer thin film was numerically studied through a Cahn-Hilliard model. Simulations show that the fundamental mechanisms of pattern formation are spinodal decomposition and nucleation and growth. The range of validity of each relaxation proc...

Full description

Bibliographic Details
Main Authors: Leopoldo R. Gómez, Nicolás A. García, Richard A. Register, Daniel A. Vega
Format: Article
Language:English
Published: Papers in Physics 2018-01-01
Series:Papers in Physics
Subjects:
Online Access:http://www.papersinphysics.org/papersinphysics/article/view/405/pdf405
Description
Summary:The order-disorder transition of a sphere-forming block copolymer thin film was numerically studied through a Cahn-Hilliard model. Simulations show that the fundamental mechanisms of pattern formation are spinodal decomposition and nucleation and growth. The range of validity of each relaxation process is controlled by the spinodal and order-disorder temperatures. The initial stages of spinodal decomposition are well approximated by a linear analysis of the evolution equation of the system. In the metastable region, the critical size for nucleation diverges upon approaching the order--disorder transition, and reduces to the size of a single domain as the spinodal is approached. Grain boundaries and topological defects inhibit the formation of superheated phases above the order--disorder temperature. The numerical results are in good qualitative agreement with experimental data on sphere-forming diblock copolymer thin films. Received: 22 August 2017, Accepted: 12 December 2017; Edited by: R. Dickman; Reviewed by: A. Peters, Dept. Chemical Engineering, Louisiana Tech Univ., Ruston, USA; DOI: http://dx.doi.org/10.4279/PIP.100001 Cite as: L R Gómez, N A García, R A Register, D A Vega, Papers in Physics 10, 100001 (2018) This paper, by L R Gómez, N A García, R A Register, D A Vega, is licensed under the Creative Commons Attribution License 4.0.
ISSN:1852-4249
1852-4249