Developing a Quality Index Associated with Rain for Hurricane Winds from SAR

Differences in synthetic aperture radar (SAR)-retrieved hurricane wind speeds from co-polarization and cross-polarization measurements are found to be correlated with rain rate. A quality index is proposed for the SAR-retrieved wind speed product to recognize heavy rain- affected areas by taking acc...

Full description

Bibliographic Details
Main Authors: Hui Shen, Chana Seitz, William Perrie, Yijun He, Mark Powell
Format: Article
Language:English
Published: MDPI AG 2018-11-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/10/11/1783
Description
Summary:Differences in synthetic aperture radar (SAR)-retrieved hurricane wind speeds from co-polarization and cross-polarization measurements are found to be correlated with rain rate. A quality index is proposed for the SAR-retrieved wind speed product to recognize heavy rain- affected areas by taking account of the different imaging mechanisms of the radar backscattering from the ocean surface via cross-polarization and co-polarization observations. A procedure is proposed to rectify wind retrievals in the rain-contaminated areas within the hurricane core, based on the theoretical physical profile for hurricanes. The effectiveness of the proposed methodology for heavy rain area recognition and wind speed reconstruction in the rain-affected areas is validated against step frequency microwave radiometer measurements from hurricane reconnaissance missions and the hurricane surface wind analysis product (HWIND). The quality flags provide confidence levels of hurricane surface winds from SAR, which together with the proposed method to correct wind retrievals in rain-contaminated areas, can contribute to improved operational applications of SAR-derived winds under hurricane conditions.
ISSN:2072-4292