Comparison of the Growth and Thermal Properties of Nonwoven Polymers after Atomic Layer Deposition and Vapor Phase Infiltration

The growth mechanism of Atomic Layer Deposition (ALD) on polymeric surfaces differs from growth on inorganic solid substrates, such as silicon wafer or glass. In this paper, we report the growth experiments of Al<sub>2</sub>O<sub>3</sub> and ZnO on nonwoven poly-L-lactic acid...

Full description

Bibliographic Details
Main Authors: Laura Keskiväli, Pirjo Heikkilä, Eija Kenttä, Tommi Virtanen, Hille Rautkoski, Antti Pasanen, Mika Vähä-Nissi, Matti Putkonen
Format: Article
Language:English
Published: MDPI AG 2021-08-01
Series:Coatings
Subjects:
Online Access:https://www.mdpi.com/2079-6412/11/9/1028
id doaj-979d1b7bfeaf4eba82f92f7948734c6f
record_format Article
spelling doaj-979d1b7bfeaf4eba82f92f7948734c6f2021-09-25T23:56:00ZengMDPI AGCoatings2079-64122021-08-01111028102810.3390/coatings11091028Comparison of the Growth and Thermal Properties of Nonwoven Polymers after Atomic Layer Deposition and Vapor Phase InfiltrationLaura Keskiväli0Pirjo Heikkilä1Eija Kenttä2Tommi Virtanen3Hille Rautkoski4Antti Pasanen5Mika Vähä-Nissi6Matti Putkonen7VTT Technical Research Centre of Finland, P.O. Box 1000, FIN-02044 Espoo, FinlandVTT Technical Research Centre of Finland, P.O. Box 1000, FIN-02044 Espoo, FinlandVTT Technical Research Centre of Finland, P.O. Box 1000, FIN-02044 Espoo, FinlandVTT Technical Research Centre of Finland, P.O. Box 1000, FIN-02044 Espoo, FinlandVTT Technical Research Centre of Finland, P.O. Box 1000, FIN-02044 Espoo, FinlandVTT Technical Research Centre of Finland, P.O. Box 1000, FIN-02044 Espoo, FinlandVTT Technical Research Centre of Finland, P.O. Box 1000, FIN-02044 Espoo, FinlandDepartment of Chemistry, University of Helsinki, P.O. Box 55, FI-00014 Helsinki, FinlandThe growth mechanism of Atomic Layer Deposition (ALD) on polymeric surfaces differs from growth on inorganic solid substrates, such as silicon wafer or glass. In this paper, we report the growth experiments of Al<sub>2</sub>O<sub>3</sub> and ZnO on nonwoven poly-L-lactic acid (PLLA), polyethersulphone (PES) and cellulose acetate (CA) fibres. Material growth in both ALD and infiltration mode was studied. The structures were examined with a scanning electron microscope (SEM), scanning transmission electron microscope (STEM), attenuated total reflectance-fourier-transform infrared spectroscopy (ATR-FTIR) and <sup>27</sup>Al nuclear magnetic resonance (NMR). Furthermore, thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) analysis were used to explore the effect of ALD deposition on the thermal properties of the CA polymer. According to the SEM, STEM and ATR-FTIR analysis, the growth of Al<sub>2</sub>O<sub>3</sub> was more uniform than ZnO on each of the polymers studied. In addition, according to ATR-FTIR spectroscopy, the infiltration resulted in interactions between the polymers and the ALD precursors. Thermal analysis (TGA/DSC) revealed a slower depolymerization process and better thermal resistance upon heating both in ALD-coated and infiltrated fibres, more pronounced on the latter type of structures, as seen from smaller endothermic peaks on TA.https://www.mdpi.com/2079-6412/11/9/1028atomic layer depositionvapor phase infiltrationhybrid materialscompositethermal properties
collection DOAJ
language English
format Article
sources DOAJ
author Laura Keskiväli
Pirjo Heikkilä
Eija Kenttä
Tommi Virtanen
Hille Rautkoski
Antti Pasanen
Mika Vähä-Nissi
Matti Putkonen
spellingShingle Laura Keskiväli
Pirjo Heikkilä
Eija Kenttä
Tommi Virtanen
Hille Rautkoski
Antti Pasanen
Mika Vähä-Nissi
Matti Putkonen
Comparison of the Growth and Thermal Properties of Nonwoven Polymers after Atomic Layer Deposition and Vapor Phase Infiltration
Coatings
atomic layer deposition
vapor phase infiltration
hybrid materials
composite
thermal properties
author_facet Laura Keskiväli
Pirjo Heikkilä
Eija Kenttä
Tommi Virtanen
Hille Rautkoski
Antti Pasanen
Mika Vähä-Nissi
Matti Putkonen
author_sort Laura Keskiväli
title Comparison of the Growth and Thermal Properties of Nonwoven Polymers after Atomic Layer Deposition and Vapor Phase Infiltration
title_short Comparison of the Growth and Thermal Properties of Nonwoven Polymers after Atomic Layer Deposition and Vapor Phase Infiltration
title_full Comparison of the Growth and Thermal Properties of Nonwoven Polymers after Atomic Layer Deposition and Vapor Phase Infiltration
title_fullStr Comparison of the Growth and Thermal Properties of Nonwoven Polymers after Atomic Layer Deposition and Vapor Phase Infiltration
title_full_unstemmed Comparison of the Growth and Thermal Properties of Nonwoven Polymers after Atomic Layer Deposition and Vapor Phase Infiltration
title_sort comparison of the growth and thermal properties of nonwoven polymers after atomic layer deposition and vapor phase infiltration
publisher MDPI AG
series Coatings
issn 2079-6412
publishDate 2021-08-01
description The growth mechanism of Atomic Layer Deposition (ALD) on polymeric surfaces differs from growth on inorganic solid substrates, such as silicon wafer or glass. In this paper, we report the growth experiments of Al<sub>2</sub>O<sub>3</sub> and ZnO on nonwoven poly-L-lactic acid (PLLA), polyethersulphone (PES) and cellulose acetate (CA) fibres. Material growth in both ALD and infiltration mode was studied. The structures were examined with a scanning electron microscope (SEM), scanning transmission electron microscope (STEM), attenuated total reflectance-fourier-transform infrared spectroscopy (ATR-FTIR) and <sup>27</sup>Al nuclear magnetic resonance (NMR). Furthermore, thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) analysis were used to explore the effect of ALD deposition on the thermal properties of the CA polymer. According to the SEM, STEM and ATR-FTIR analysis, the growth of Al<sub>2</sub>O<sub>3</sub> was more uniform than ZnO on each of the polymers studied. In addition, according to ATR-FTIR spectroscopy, the infiltration resulted in interactions between the polymers and the ALD precursors. Thermal analysis (TGA/DSC) revealed a slower depolymerization process and better thermal resistance upon heating both in ALD-coated and infiltrated fibres, more pronounced on the latter type of structures, as seen from smaller endothermic peaks on TA.
topic atomic layer deposition
vapor phase infiltration
hybrid materials
composite
thermal properties
url https://www.mdpi.com/2079-6412/11/9/1028
work_keys_str_mv AT laurakeskivali comparisonofthegrowthandthermalpropertiesofnonwovenpolymersafteratomiclayerdepositionandvaporphaseinfiltration
AT pirjoheikkila comparisonofthegrowthandthermalpropertiesofnonwovenpolymersafteratomiclayerdepositionandvaporphaseinfiltration
AT eijakentta comparisonofthegrowthandthermalpropertiesofnonwovenpolymersafteratomiclayerdepositionandvaporphaseinfiltration
AT tommivirtanen comparisonofthegrowthandthermalpropertiesofnonwovenpolymersafteratomiclayerdepositionandvaporphaseinfiltration
AT hillerautkoski comparisonofthegrowthandthermalpropertiesofnonwovenpolymersafteratomiclayerdepositionandvaporphaseinfiltration
AT anttipasanen comparisonofthegrowthandthermalpropertiesofnonwovenpolymersafteratomiclayerdepositionandvaporphaseinfiltration
AT mikavahanissi comparisonofthegrowthandthermalpropertiesofnonwovenpolymersafteratomiclayerdepositionandvaporphaseinfiltration
AT mattiputkonen comparisonofthegrowthandthermalpropertiesofnonwovenpolymersafteratomiclayerdepositionandvaporphaseinfiltration
_version_ 1717367494761512960