Computational parametric study on efficiency of low boiling point fluid plants under heat exchange process intensification

One of the main challenges for the energy industry is to improve the reliability and efficiency of heat exchange equipment in heating plants. Phase-change heat exchangers with low boiling point fluid (LBPF) are widely used in both conventional and renewable energy. The main objectives of increasing...

Full description

Bibliographic Details
Main Authors: Likhaeva Alena, Grigoriev Sergey, Trushin Evgeniy, Dasaev Marat
Format: Article
Language:English
Published: EDP Sciences 2021-01-01
Series:E3S Web of Conferences
Online Access:https://www.e3s-conferences.org/articles/e3sconf/pdf/2021/65/e3sconf_esr2021_06003.pdf
Description
Summary:One of the main challenges for the energy industry is to improve the reliability and efficiency of heat exchange equipment in heating plants. Phase-change heat exchangers with low boiling point fluid (LBPF) are widely used in both conventional and renewable energy. The main objectives of increasing the efficiency of heat exchange equipment are to reduce the weight and dimensions, to increase the amount of heat transferred and to reduce the electricity consumption spent on pumping the heat transfer agent. These objectives are achieved by implementing various methods of heat exchange intensification in heat exchange equipment. A key aspect concerning application of various types of heat exchange intensifiers in heat exchange equipment is evaluation of possibility to increase their design efficiency. The paper presents the results of a computational parametric study of changes in efficiency of some LBPF-based plants when intensifying heat exchange processes by modifying functional surfaces of heat exchangers by laser ablation.
ISSN:2267-1242