BEECH TREE DENSITY ESTIMATION USING SENTINEL-2 DATA (CASE STUDY: KHYROUD FOREST)

Obtaining information about forest attributes is essential for planning, monitoring, and management of forests. Due to the time and cost consuming of Tree Density (TD) using field measurements especially in the vast and remote areas, remote sensing techniques have gained more attention in scientific...

Full description

Bibliographic Details
Main Authors: G. Ronoud, A. A. Darvish Sefat, P. Fatehi
Format: Article
Language:English
Published: Copernicus Publications 2019-10-01
Series:The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Online Access:https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLII-4-W18/891/2019/isprs-archives-XLII-4-W18-891-2019.pdf
Description
Summary:Obtaining information about forest attributes is essential for planning, monitoring, and management of forests. Due to the time and cost consuming of Tree Density (TD) using field measurements especially in the vast and remote areas, remote sensing techniques have gained more attention in scientific community. Khyroud forest, a part of Hyrcanian forest of Iran, with a high species biodiversity and growing volume stock plays an important role in carbon storage. The aim of this study was to assess the capability of Sentinel-2 data for estimating the tree density in the Khyroud forest. 65 square sample plots with an area of 2025&thinsp;m<sup>2</sup> were measured. In each sample plot, trees with diameter at the breast height (DBH) higher than 7.5-cm were recorded. The quality of Sentinel-2 data in terms of geometric correction and cloud effect were investigated. Different processing approaches such as vegetation indices and Tasseled Cap transformation on spectral bands in combination with an empirical approach were implemented. Also, some of biophysical variables were computed. To assess the model performance, the data were randomly divided into parts, 70% of sample plots were used for modelling and 30% for validation. The results showed that the SVR algorithm (linear kernel) with a relative RMSE of 23.09% and a R<sup>2</sup> of 0.526 gained the highest performance for tree density estimation.
ISSN:1682-1750
2194-9034