Supernova bounds on the dark photon using its electromagnetic decay

The hypothetical massive dark photon (γ′) which has kinetic mixing with the SM photon can decay electromagnetically to e+e− pairs if its mass m exceeds 2me, and otherwise into three SM photons. These decays yield cosmological and supernovae associated signatures. We briefly discuss these signatures,...

Full description

Bibliographic Details
Main Authors: Demos Kazanas, Rabindra N. Mohapatra, Shmuel Nussinov, Vigdor L. Teplitz, Yongchao Zhang
Format: Article
Language:English
Published: Elsevier 2015-01-01
Series:Nuclear Physics B
Online Access:http://www.sciencedirect.com/science/article/pii/S0550321314003447
Description
Summary:The hypothetical massive dark photon (γ′) which has kinetic mixing with the SM photon can decay electromagnetically to e+e− pairs if its mass m exceeds 2me, and otherwise into three SM photons. These decays yield cosmological and supernovae associated signatures. We briefly discuss these signatures, particularly in connection with the supernova SN1987A, and delineate the extra constraints that arise on the mass and mixing parameter of the dark photon. In particular, we find that for dark photon mass mγ′ in the 5–20 MeV range arguments based on supernova 1987A observations lead to a bound on ϵ which is about 300 times stronger than the presently existing bounds based on energy loss arguments.
ISSN:0550-3213