Identification of several mutations in ATP2C1 in Lebanese families: insight into the pathogenesis of Hailey-Hailey disease.

BACKGROUND:Hailey-Hailey disease (HHD) is an inherited blistering dermatosis characterized by recurrent erosions and erythematous plaques that generally manifest in intertriginous areas. Genetically, HHD is an autosomal dominant disease, resulting from heterozygous mutations in ATP2C1, which encodes...

Full description

Bibliographic Details
Main Authors: Waed Btadini, Ossama K Abou Hassan, Dana Saadeh, Ossama Abbas, Farah Ballout, Abdul-Ghani Kibbi, Ghassan Dbaibo, Nadine Darwiche, Georges Nemer, Mazen Kurban
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2015-01-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC4319924?pdf=render
id doaj-978975644aec47a1801ebb2833617f47
record_format Article
spelling doaj-978975644aec47a1801ebb2833617f472020-11-24T21:50:25ZengPublic Library of Science (PLoS)PLoS ONE1932-62032015-01-01102e011553010.1371/journal.pone.0115530Identification of several mutations in ATP2C1 in Lebanese families: insight into the pathogenesis of Hailey-Hailey disease.Waed BtadiniOssama K Abou HassanDana SaadehOssama AbbasFarah BalloutAbdul-Ghani KibbiGhassan DbaiboNadine DarwicheGeorges NemerMazen KurbanBACKGROUND:Hailey-Hailey disease (HHD) is an inherited blistering dermatosis characterized by recurrent erosions and erythematous plaques that generally manifest in intertriginous areas. Genetically, HHD is an autosomal dominant disease, resulting from heterozygous mutations in ATP2C1, which encodes a Ca2+/Mn2+ATPase. In this study, we aimed at identifying and analyzing mutations in five patients from unrelated families diagnosed with HHD and study the underlying molecular pathogenesis. OBJECTIVES:To genetically study Lebanese families with HHD, and the underlying molecular pathogenesis of the disease. METHODS:We performed DNA sequencing for the coding sequence and exon-intron boundaries of ATP2C1. Heat shock experiments were done on several cell types. This was followed by real-time and western blotting for ATP2C1, caspase 3, and PARP proteins to examine any possible role of apoptosis in HHD. This was followed by TUNEL staining to confirm the western blotting results. We then performed heat shock experiments on neonatal rat primary cardiomyocytes. RESULTS:Four mutations were detected, three of which were novel and one recurrent mutation in two families. In order for HHD to manifest, it requires both the genetic alteration and the environmental stress, therefore we performed heat shock experiments on fibroblasts (HH and normal) and HaCaT cells, mimicking the environmental factor seen in HHD. It was found that stress stimuli, represented here as temperature stress, leads to an increase in the mRNA and protein levels of ATP2C1 in heat-shocked cells as compared to non-heat shocked ones. However, the increase in ATP2C1 and heat shock protein hsp90 is significantly lower in HH fibroblasts in comparison to normal fibroblasts and HaCaT cells. We did not find a role for apoptosis in the pathogenesis of HHD. A similar approach (heat shock experiments) done on rat cardiomyocytes, led to a significant variation in ATP2C1 transcript and protein levels. CONCLUSION:This is the first genetic report of HHD from Lebanon in which we identified three novel mutations in ATP2C1 and shed light on the molecular mechanisms and pathogenesis of HHD by linking stress signals like heat shock to the observed phenotypes. This link was also found in cultured cardiomyocytes suggesting thus a yet uncharacterized cardiac phenotype in HHD patients masked by its in-expressivity in normal health conditions.http://europepmc.org/articles/PMC4319924?pdf=render
collection DOAJ
language English
format Article
sources DOAJ
author Waed Btadini
Ossama K Abou Hassan
Dana Saadeh
Ossama Abbas
Farah Ballout
Abdul-Ghani Kibbi
Ghassan Dbaibo
Nadine Darwiche
Georges Nemer
Mazen Kurban
spellingShingle Waed Btadini
Ossama K Abou Hassan
Dana Saadeh
Ossama Abbas
Farah Ballout
Abdul-Ghani Kibbi
Ghassan Dbaibo
Nadine Darwiche
Georges Nemer
Mazen Kurban
Identification of several mutations in ATP2C1 in Lebanese families: insight into the pathogenesis of Hailey-Hailey disease.
PLoS ONE
author_facet Waed Btadini
Ossama K Abou Hassan
Dana Saadeh
Ossama Abbas
Farah Ballout
Abdul-Ghani Kibbi
Ghassan Dbaibo
Nadine Darwiche
Georges Nemer
Mazen Kurban
author_sort Waed Btadini
title Identification of several mutations in ATP2C1 in Lebanese families: insight into the pathogenesis of Hailey-Hailey disease.
title_short Identification of several mutations in ATP2C1 in Lebanese families: insight into the pathogenesis of Hailey-Hailey disease.
title_full Identification of several mutations in ATP2C1 in Lebanese families: insight into the pathogenesis of Hailey-Hailey disease.
title_fullStr Identification of several mutations in ATP2C1 in Lebanese families: insight into the pathogenesis of Hailey-Hailey disease.
title_full_unstemmed Identification of several mutations in ATP2C1 in Lebanese families: insight into the pathogenesis of Hailey-Hailey disease.
title_sort identification of several mutations in atp2c1 in lebanese families: insight into the pathogenesis of hailey-hailey disease.
publisher Public Library of Science (PLoS)
series PLoS ONE
issn 1932-6203
publishDate 2015-01-01
description BACKGROUND:Hailey-Hailey disease (HHD) is an inherited blistering dermatosis characterized by recurrent erosions and erythematous plaques that generally manifest in intertriginous areas. Genetically, HHD is an autosomal dominant disease, resulting from heterozygous mutations in ATP2C1, which encodes a Ca2+/Mn2+ATPase. In this study, we aimed at identifying and analyzing mutations in five patients from unrelated families diagnosed with HHD and study the underlying molecular pathogenesis. OBJECTIVES:To genetically study Lebanese families with HHD, and the underlying molecular pathogenesis of the disease. METHODS:We performed DNA sequencing for the coding sequence and exon-intron boundaries of ATP2C1. Heat shock experiments were done on several cell types. This was followed by real-time and western blotting for ATP2C1, caspase 3, and PARP proteins to examine any possible role of apoptosis in HHD. This was followed by TUNEL staining to confirm the western blotting results. We then performed heat shock experiments on neonatal rat primary cardiomyocytes. RESULTS:Four mutations were detected, three of which were novel and one recurrent mutation in two families. In order for HHD to manifest, it requires both the genetic alteration and the environmental stress, therefore we performed heat shock experiments on fibroblasts (HH and normal) and HaCaT cells, mimicking the environmental factor seen in HHD. It was found that stress stimuli, represented here as temperature stress, leads to an increase in the mRNA and protein levels of ATP2C1 in heat-shocked cells as compared to non-heat shocked ones. However, the increase in ATP2C1 and heat shock protein hsp90 is significantly lower in HH fibroblasts in comparison to normal fibroblasts and HaCaT cells. We did not find a role for apoptosis in the pathogenesis of HHD. A similar approach (heat shock experiments) done on rat cardiomyocytes, led to a significant variation in ATP2C1 transcript and protein levels. CONCLUSION:This is the first genetic report of HHD from Lebanon in which we identified three novel mutations in ATP2C1 and shed light on the molecular mechanisms and pathogenesis of HHD by linking stress signals like heat shock to the observed phenotypes. This link was also found in cultured cardiomyocytes suggesting thus a yet uncharacterized cardiac phenotype in HHD patients masked by its in-expressivity in normal health conditions.
url http://europepmc.org/articles/PMC4319924?pdf=render
work_keys_str_mv AT waedbtadini identificationofseveralmutationsinatp2c1inlebanesefamiliesinsightintothepathogenesisofhaileyhaileydisease
AT ossamakabouhassan identificationofseveralmutationsinatp2c1inlebanesefamiliesinsightintothepathogenesisofhaileyhaileydisease
AT danasaadeh identificationofseveralmutationsinatp2c1inlebanesefamiliesinsightintothepathogenesisofhaileyhaileydisease
AT ossamaabbas identificationofseveralmutationsinatp2c1inlebanesefamiliesinsightintothepathogenesisofhaileyhaileydisease
AT farahballout identificationofseveralmutationsinatp2c1inlebanesefamiliesinsightintothepathogenesisofhaileyhaileydisease
AT abdulghanikibbi identificationofseveralmutationsinatp2c1inlebanesefamiliesinsightintothepathogenesisofhaileyhaileydisease
AT ghassandbaibo identificationofseveralmutationsinatp2c1inlebanesefamiliesinsightintothepathogenesisofhaileyhaileydisease
AT nadinedarwiche identificationofseveralmutationsinatp2c1inlebanesefamiliesinsightintothepathogenesisofhaileyhaileydisease
AT georgesnemer identificationofseveralmutationsinatp2c1inlebanesefamiliesinsightintothepathogenesisofhaileyhaileydisease
AT mazenkurban identificationofseveralmutationsinatp2c1inlebanesefamiliesinsightintothepathogenesisofhaileyhaileydisease
_version_ 1725884198425722880