Legendre Polynomials Operational Matrix Method for Solving Fractional Partial Differential Equations with Variable Coefficients

A numerical method for solving a class of fractional partial differential equations with variable coefficients based on Legendre polynomials is proposed. A fractional order operational matrix of Legendre polynomials is also derived. The initial equations are transformed into the products of several...

Full description

Bibliographic Details
Main Authors: Yongqiang Yang, Yunpeng Ma, Lifeng Wang
Format: Article
Language:English
Published: Hindawi Limited 2015-01-01
Series:Mathematical Problems in Engineering
Online Access:http://dx.doi.org/10.1155/2015/915195
Description
Summary:A numerical method for solving a class of fractional partial differential equations with variable coefficients based on Legendre polynomials is proposed. A fractional order operational matrix of Legendre polynomials is also derived. The initial equations are transformed into the products of several matrixes by using the operational matrix. A system of linear equations is obtained by dispersing the coefficients and the products of matrixes. Only a small number of Legendre polynomials are needed to acquire a satisfactory result. Results obtained using the scheme presented here show that the numerical method is very effective and convenient for solving fractional partial differential equations with variable coefficients.
ISSN:1024-123X
1563-5147