Summary: | The fast tracking of invasion spatial patterns of alien species is crucial for the implementation of preventive and management strategies of those species. Recently, a honeybee pest, the small hive beetle Aethina tumida (hereafter SHB), has been reported in Italy, where it colonized more than 50 apiaries in an area of about 300 km2. SHB is a nest parasite and scavenger of honeybee colonies native of Sub-Saharian Africa. Likely being helped by the globalization of apiculture, SHB underwent several invasions in the last twenty years, causing locally relevant economic impact. While many features of its biology have been addressed, an important knowledge gap concerns the spatial invasion dynamics in invaded areas. In this paper we coupled two spatial analysis techniques (geographic profiling and a density-based spatial clustering algorithm) to uncover the possible invasion pattern of SHB in Italy. We identified the port town of Gioia Tauro as the most likely point from which SHB may have spread and suggested the possible successive axes of diffusion. These putative diffusion paths suggest that the SHB spread in south Italy might have been due to a mix of natural dispersal between close apiaries and longer distance movement through faster, likely human-mediated, communication routes. Keywords: Apis mellifera, DBSCAN, Invasive alien species, Pest species, Spatial dynamics, Small hive beetle, Notifiable disease
|